

RIL-1101 Page i

RESEARCH INFORMATION LETTER 1101:

Technical Basis to Review Hazard Analysis
of Digital Safety Systems

EXECUTIVE SUMMARY

The Office of Nuclear Regulatory Research (RES) prepared RIL-1101 in response to an Office
of New Reactors (NRO) user need request, dated December 8, 2011. NRO requested technical
basis for the regulatory review of an applicant’s hazard analysis (HA) and corresponding
acceptance criteria relevant to digital instrumentation and control (DI&C) safety systems of
nuclear power plants (NPPs). The requested information supports improvements to the
regulatory guidance for evaluation of an applicant's HA.

The technical basis provided in RIL-1101 focuses on evaluation of an applicant’s HA—rather
than performing HA—while also addressing challenges that NRO has encountered during its
licensing reviews. Many of these challenges come from hazards that are rooted in systemic
causes, such as inadequacies in engineering organizations, processes or methods. RIL-1101
refers to systemic causes as contributory hazards. RIL-1101 identifies systemic causes of DI&C
safety system developments that may contribute to hazards. When a systemic cause can
adversely affect an NPP DI&C safety system, RIL-1101 considers it a contributory hazard.

RIL-1101 provides the U.S. Nuclear Regulatory Commission’s (NRC’s) licensing staff technical
basis to create regulatory guidance for evaluation of an applicant’s HA for DI&C systems. An
applicant's HA for a design certification or license amendment, which involves a DI&C safety
system, establishes design bases of the plant and for its digital safety systems. Where RIL-1101
identifies contributory hazards relevant to DI&C safety systems, RIL-1101 also identifies
conditions to address them and reduce the hazard space. These conditions to reduce the
hazard space represent technical basis for potential acceptance criteria for regulatory reviews of
future new and advanced reactor applications.

Hazards are the potential for harm (e.g., radiological consequences leading to disease, loss of
life, damage to the environment, etc.). To prevent these hazards, nuclear power plant I&C
systems maintain plant processes within acceptable performance limits by making reliable and
accurate measurements that lead to reliable, accurate, and timely control actions. Using
redundant, independent, electrically-isolated, and physically-separated components, I&C safety
systems sense plant conditions and actuate controls before a limiting safety setting is exceeded
to preserve fuel and reactor vessel integrity.

RIL-1101 identifies examples of hazards and factors that contribute to hazards by degrading the
safety function of a DI&C system. DI&C systems differ from their analog and mechanical
counterparts. Rapid changes in digital technology prevent accumulation of the kind of operating
history that applies to analog and mechanical systems. Many unsafe behaviors of digital I&C
systems do not relate to physical principles like those used to evaluate the safety and reliability
of analog and mechanical systems. Instead, malfunctions of DI&C systems more often arise
from systemic causes associated with characteristics of their design and development. These
characteristics can also make verification of DI&C systems more difficult when compared to
analog or mechanical systems. Furthermore, analog and mechanical systems have

RIL-1101 Page ii

interconnections, dependencies, and interactions that are readily apparent to a reviewer as
wires and pipes. In contrast, DI&C systems have interconnections, dependencies and
interactions that are less obvious. When unrecognized these less obvious attributes can
degrade the safety benefit presumed to exist through redundant, independent, electrically-
isolated, and physically-separated safety components. RIL-1101 addresses each of the
considerations, which are unique to DI&C systems.

Adopters of the hazard-analysis approach in RIL-1101 can apply it to an early-stage functional
concept, and iterate the approach on the successive work products, as the development
progresses. When applying the hazard-analysis approach in RIL-1101, the resulting design
criteria and design bases would include constraints that avoid conditions that contribute to
hazards. Early Identification of these avoidable contributory hazards and constraints to eliminate
them drive downstream engineering to prevent later problems. The prevention of problems
earlier in the lifecycle improves lifecycle economics while increasing safety.

RIL-1101 Page ii

Contents
Page #

EXECUTIVE SUMMARY .. i

1 INTRODUCTION ... 1

1.1 Regulatory basis... 1

1.2 Work authorization ... 1

1.3 Relationship with licensing experience .. 1

1.4 Significance of the technical basis in licensing reviews .. 2

1.5 Background .. 2

1.6 Purpose and intended audience .. 3

1.7 Scope ... 3

1.7.1 Immediate scope limited to learning cycles .. 4

1.7.1.1 Assumptions about areas not well understood ... 4

1.7.1.2 Extrapolation from recent licensing experience .. 4

1.7.1.3 Support for application-specific customization of SRP Chapter 7........................ 4

1.7.2 Focus on evaluation rather than performance of hazard analysis 4

1.7.3 Focus on licensing reviews of safety automation ... 5

1.7.4 Focus on safety-related systems for NPPs .. 5

1.7.5 Types of systems intended in scope .. 5

1.7.6 Focus on contributory hazards rooted in systemic causes 5

1.7.7 Scope excludes risk quantification ... 6

1.7.8 Relation between hazard analysis and safety analysis.. 6

1.8 Organization of RIL-1101 ... 8

2 CONSIDERATIONS IN EVALUATING HAZARD ANALYSIS .. 10

2.1 Evaluation of Overall Hazard Analysis... 11

2.1.1 Considerations for hazards within the system being analyzed 15

2.1.2 Considerations for hazards contributed through processes 15

2.2 Evaluation of hazard analysis—organizational processes .. 19

2.3 Evaluation of hazard analysis—technical processes .. 23

2.4 Evaluation of Hazard Analysis—System Concept ... 25

2.4.1 Hazards associated with the environment of the DI&C system 25

2.4.1.1 Hazards related to interaction with plant processes ... 26

2.4.1.2 Contributory hazards from NPP-wide I&C architecture 29

RIL-1101 Page iii

2.4.1.3 Contributory hazards from human/machine interactions 30

2.4.2 Contributory hazards in conceptual architecture .. 32

2.4.3 Contributory hazards from conceptualization processes 32

2.5 Evaluation of hazard analysis—Requirements .. 33

2.5.1 System Requirements .. 33

2.5.1.1 Quality requirements ... 33

2.5.1.2 Contributory hazards through inadequate system requirements 37

2.5.1.3 Contributory hazards from system-requirements engineering 42

2.5.2 Software Requirements .. 44

2.5.2.1 Contributory hazards in software requirements .. 45

2.5.2.2 Contributory hazards from software-requirements engineering 45

2.6 Evaluation of hazard analysis—Architecture ... 46

2.6.1 Contributory hazards in system architecture .. 46

2.6.2 Contributory hazards from system architectural engineering 49

2.6.3 Contributory hazards in software architecture .. 52

2.6.4 Contributory hazards in software architectural engineering 54

2.7 Evaluation of Hardware-Related Hazard Analysis .. 54

2.8 Evaluation of Hazard Analysis related to Software Detailed Design 57

2.9 Evaluation of Hazard Analysis Related to Software Implementation 58

3 DISCUSSION OF REGULATORY SIGNIFICANCE ... 58

4 CONCLUSIONS .. 61

5 FUTURE RESEARCH, DEVELOPMENT, AND TRANSITION .. 62

5.1 Transition, knowledge transfer, and knowledge management 62

5.2 Integration of safety-significant information from NPP-level analysis 62

5.3 Harmonization and disambiguation of vocabulary ... 62

5.4 International harmonization .. 63

5.5 Learning from other application domains and agencies .. 63

5.6 Analysis earlier in the system-development lifecycle .. 63

5.7 Risk-informed evaluation.. 63

5.8 Integrated hazard analysis for safety, security and other concerns 63

5.9 Integrated organizing framework ... 63

5.10 Ideas received through review comments ... 64

6 ABBREVIATIONS AND ACRONYMS ... 65

RIL-1101 Page iv

7 REFERENCES .. 66

APPENDIX A: Glossary .. 69

APPENDIX B: Technical Review Process ... 90

APPENDIX C: Evaluating Hazard Analysis—State Of The Art ... 92

C.1 Contextual interpretation of terms .. 92

C.1.1 General context of hazard analysis ... 92

C.1.2 Object of analysis .. 92

C.1.3 Analysis at different levels in the dependency network .. 93

C.2 Reference lifecycle model for hazard analysis .. 93

C.3 HA tasks—an example set ... 96

C.3.1 Evaluating the quality of HA output ... 98

C.3.2 Hazard identification and logging .. 99

C.3.3 Evaluation of a logged hazard ... 100

C.4 Effect of competence on quality of HA work products ... 101

C.5 Quality of information input to HA at each development phase 104

C.6 Hazard Analysis Techniques—useful extractions from survey 105

C.7 References for Appendix C .. 107

APPENDIX D: Refinement ... 113

D.1 Purpose and Scope .. 113

D.2 Abstraction and refinement .. 113

D.3 Motivation for refinement as a constraint on system development 115

D.4 Mathematical underpinnings .. 115

D.4.1 Refinement as logical implication .. 116

D.4.2 Useful properties of the refinement relation .. 116

D.4.3 Sequence of Refinement Steps ... 116

D.4.4 Refinement and Decomposition .. 117

D.4.4.1 Composing and Decomposing Interfaces .. 117

D.4.4.2 Compositionality of Refinement .. 117

D.4.4.3 Example .. 118

D.5 References for Appendix D .. 119

APPENDIX E: Checklists to assist hazard recognition .. 121

E.1 Categories of hazard origination .. 121

E.2 Checklist for hazard sources .. 125

RIL-1101 Page v

E.3 Checklist of hazard sources in semiconductor manufacturing .. 126

E.4 Hazard sources in the physical environment of a digital safety system 128

E.5 Digital safety system contribution to hazards affecting its environment 129

E.6 References for Appendix E... 129

APPENDIX F: Organizational Qualities To Support Safety ... 130

F.1 Five Principles ... 131

F.2 Accountability, Standardization, and Adaptation .. 132

F.3 Organizational culture and decisional premises... 133

F.4 Communication for collective mindfulness ... 135

F.4.1 About Becoming a Competent Communicator .. 135

F.4.2 Participatory Communication Climate ... 136

F.4.3 Collective Communication Competence and Diversity ... 136

F.4.4 Conversation Quality and Deference to Expertise .. 137

F.4.4.1 Characteristics of Groupthink .. 137

F.4.4.2 Countermeasures to Prevent Groupthink ... 137

F.5 Collective mindfulness and competence .. 137

F.6 References for Appendix F ... 138

APPENDIX G: An Example Case Study .. 141

G.1 Ft. Calhoun Event ... 141

G.2 References for Appendix G .. 142

APPENDIX H: Examples of NPP Modes ... 143

APPENDIX I: Evaluation of Timing Analysis .. 144

I.1 Timing analysis by hand .. 144

I.2 Timing analysis by a program .. 145

I.3 Mathematical analysis of timing ... 145

I.3.1 Mathematical analysis of timing with fixed priorities ... 145

I.3.2 Mathematical analysis of timing with dynamic priorities ... 145

I.4 FPGAs .. 145

I.5 Practical considerations in applying mathematical analysis ... 146

I.5.1 Interrupts.. 146

I.5.2 Resources.. 146

I.5.3 Ordering ... 146

I.5.4 I/O .. 146

RIL-1101 Page vi

I.5.5 Distributed systems ... 146

I.6 Caveats and things to watch out for .. 147

I.6.1 Task semantics .. 147

I.6.2 Non-determinism introduced by hardware .. 147

I.6.3 The overhead of the OS .. 147

I.6.4 Richard’s Anomalies .. 147

I.6.5 Overloads .. 147

I.7 Integrating timing analysis in engineering ... 147

I.8 References for Appendix I ... 147

APPENDIX J: Assumptions .. 149

J.1 Systematized consideration of assumptions—state of the art ... 149

J.2 Monitoring an assumption at run time ... 150

J.3 Statement of assumptions within code ... 151

J.4 Statement of assumptions within models ... 151

J.5 References for Appendix J .. 151

APPENDIX K: Dependency .. 152

K.1 Purpose and scope ... 152

K.2 Safety significance of dependency ... 152

K.3 Types of dependency ... 153

K.4 Examples of dependencies .. 153

K.4.1 Example of a data dependency ... 154

K.4.2 Example of a timing dependency .. 154

K.4.3 Example of a dependency on a hardware function ... 155

K.4.4 Example of a resource dependency .. 155

K.4.5 Dependency through assumptions and constraints .. 155

K.4.6 Example of logical dependency between logical entities .. 155

K.5 Dependencies can network .. 156

K.6 Dependencies can propagate through faults ... 156

K.7 Unrecognized dependency ... 157

K.8 Expressing dependencies .. 157

K.9 Deriving dependencies ... 159

K.10 Avoiding unwanted dependency .. 159

K.11 Languages available for modeling dependencies .. 159

K.12 References for Appendix K .. 160

RIL-1101 Page vii

Figures

Page #

Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis. 7

Figure 2: Example of a dependency structure (cyclic graph)... 10

Figure 3: Contributory hazard space in focus. ... 11

Figure 4: Factors influencing the work product of development. ... 17

Figure 5: Regions of state space for hazard analysis. ... 29

Figure 6: NPP-wide I&C architecture—allocation of functions in the concept phase. 30

Figure 7: Quality requirements should be explicit. ... 34

Figure 8: Quality characteristics to support safety. .. 35

Figure 9: Hazard analysis in relation to development lifecycle and verification activities. 95

Figure 10: Structure of reasoning about the contribution to a hazard. 101

Figure 11: Stepwise refinement: design decisions are made in small steps. 114

Figure 12: Example of architectural refinement through decomposition. 119

Figure 13: Example from event on June 7, 2011, at Ft Calhoun nuclear power plant (NPP). .. 142

Figure 14: Example of semi-formal statement of an assumption. ... 149

Tables

Page #

Table 1: Considerations in broadly evaluating hazard analysis ... 12

Table 2: Examples of contributions to hazards through interdependencies 17

Table 3: Examples of contributions to hazards through an organization’s culture 19

Table 4: Examples of contributions to hazards through technical processes 23

Table 5: Examples of contributions to hazards through interactions with the plant 26

Table 6: Examples of contributions to hazards through human/machine interactions 31

Table 7: Examples of contributions to hazards through human/machine interaction engineering
... 32

Table 8: Examples of contributions to hazards through quality attributes 35

Table 9: Examples of contributions to hazards through inadequate system requirements 38

Table 10: Examples of contributions to hazards through inadequate system-requirements
engineering ... 42

Table 11: Examples of contributions to hazards through inadequate software requirements 45

Table 12: Examples of contributions to hazards through inadequate software-requirements
engineering ... 45

RIL-1101 Page viii

Table 13: Examples of contributions to hazards through interference .. 46

Table 14: Examples of contributions to hazards through inadequate system architectural
engineering ... 49

Table 15: Examples of contributions to hazards through software architecture 52

Table 16: Examples of contributions to hazards through inadequate software architectural
engineering ... 54

Table 17: Examples of contribution to hazards through hardware .. 54

Table 18: Examples of contributions to hazards through inadequate hardware engineering 56

Table 19: Examples of contributions to hazards through inadequate software detailed design . 57

Table 20: Examples of contributions to hazards through software implementation 58

Table 21: HA activities and tasks—a reference model .. 96

Table 22: Characterization of information richness in phase work products 104

Table 23: Hazard analysis techniques relevant to NPP digital safety systems 106

Table 24: Simple examples of refinement .. 114

Table 25: Some categories of hazard origination .. 121

Table 26: Checklist of hazard sources in semiconductor manufacturing equipment 126

Table 27: Different types of assumptions which could be stated in XML 150

Table 28: Examples of assumptions for different purposes ... 150

RIL-1101 Page 1

1 INTRODUCTION
This research information letter (RIL) provides the U.S. Nuclear Regulatory Commission’s
(NRC’s) licensing staff the technical basis to support the exercise of judgment in their review of
hazard analysis (HA) performed on a digital safety system by an applicant seeking design
certification, combined license, or a license amendment. Section 1.5 provides a brief
background on HA, supported with elaboration in Appendix C. Section 1.6 states the purpose
and intended audience.

1.1 Regulatory basis
Hazard analysis of a digital safety system could address clauses 4.8 and 5.6 in IEEE
STANDARD 603-1991 [1], incorporated by reference in 10 CFR 50.55a(h)(3) [2]. Hazard
analysis of a digital safety system could contribute to the analysis aspect of Title 10, “Energy,” of
the Code of Federal Regulations (10 CFR) 50.34(a)(3) [3] and 10 CFR 52.47(a)(2) [4].

1.2 Work authorization
The RIL has been prepared in response to a non-publicly available user need request, NRC
Agencywide Documents Access and Management System (ADAMS) Accession
No. ML11313A214, from the Office of New Reactors (NRO) dated December 8, 2011, asking
the Office of Nuclear Regulatory Research (RES) for assimilation of the technical basis to
support regulatory review of an applicant’s HA relevant to digital instrumentation and control
(DI&C) safety systems in nuclear power plants (NPPs). The user need arose, because NRC
does not have explicit guidance to review HA for a digital safety system of the kind seen in
recent licensing reviews.

1.3 Relationship with licensing experience
The RIL has been focused on issues encountered in NRO’s recent licensing reviews,
particularly hazards, which are rooted in systemic causes such as inadequacies in engineering;
these causes are called contributory hazards in the RIL. The technical basis is focused on
evaluation of an applicant’s HA rather than performing HA. Thus, the RIL is not intended to be a
self-contained, comprehensive, and complete standalone technical reference for reviewing HA
of digital safety systems in NPPs. Section 1.7 elaborates on the scope. Section 1.8 explains the
organization of the RIL.

Digital safety systems are becoming more difficult to analyze for many reasons, such as the
following:

• Rapid changes in the nature of systems and the underlying technologies (H-OTproc-7) and

• Increasing interconnectivity (Sections 2.4.1 and 2.4.2), resulting in

• Less accumulated experience for hazard analysis of each kind of new system (H-OTproc-7).

Examples of associated contributory hazards include the following:

• Inadequately constrained interactions of the digital safety system being analyzed with other
systems and elements in its environment.

• Incorrect decomposition and allocation of NPP-level safety functions into NPP-wide I&C
architecture and then to the digital safety system being analyzed.

https://adamsxt.nrc.gov/idmws/ViewDocByAccession.asp?AccessionNumber=ML11313A214

RIL-1101 Page 2

• Inadequate identification of the quality properties1 (e.g., safety assurability, verifiability, and
analyzability) associated with safety functions.

• Incorrect flowdown into constraints on the architecture of the system and then the
architecture of the software or other forms of logic.

• Inadequate flowdown to identify requirements and constraints on technical processes,
supporting processes, and organizational processes.

• Declining supply and replenishment of requisite competence (Section 2.1; H-0-2).

• Longer supply chains with weaker communication links (Section 2.1.2 H-0-9 item 2).

• Inadequate quality of cross-organizational cross-disciplinary communications, etc.
(Section 2.2; H-culture-9).

1.4 Significance of the technical basis in licensing reviews
For each “contributory hazard scenario” (which illustrates some hazard space2), the RIL
provides examples of conditions that reduce the hazard space. These cause-and-effect
relationships form the core of the technical basis in RIL-1101, assimilated from existing
knowledge, acquired through a combination of literature search and expert consultation. These
causal relationships also form a safety-goal-focused organizing framework for an applicant’s
analysis.

To suit project-specific needs, NRC’s licensing offices can select “contributory hazard
scenarios” and corresponding conditions to reduce the respective hazard spaces, and transform
these conditions into review criteria; Appendix A of NRO’s mPower design-specific review
standard (DSRS) [5] is an example.

1.5 Background
A hazard, in general, is defined as “potential for harm.” In RIL-1101, the scope of “harm” is
limited to the degradation of the performance of an NPP safety function assigned to the system
to be analyzed.

Hazard analysis (HA), a systems-engineering activity3, is the process of examining a system
throughout its lifecycle to identify inherent hazards and contributory hazards4, as well as the
requirements and constraints to eliminate, prevent, or otherwise control those hazards.

HA is a subset of safety analysis and its evaluation is a subset of safety evaluation; the
relationship is explained in Section 1.7.8.

1 In common practice, these are treated as “nonfunctional” requirements.
2 Hazard space is defined as “all of the possible combinations of specific conditions that are relevant to a
scenario that could lead to the degradation of a safety function.”
3 This implies the use of systematic and repeatable methods for performing HA.
4 Which include causal factors.

RIL-1101 Page 3

Current practice exhibits a wide variation in usage of the terms “hazard” and “hazard analysis.”
For example, some experts distinguish between a hazard, its source, and its cause. To avoid
confusion, RIL-1101 bounds the scope of HA as follows:

1. NPP-level safety analysis (including NPP-level HA5) identifies functions required for
NPP-level safety (known as safety functions) and correctly identifies the functions to be
allocated to the I&C level.

2. All hazards leading to the degradation of a safety function allocated to the I&C level are
identified.

3. Causes, including contributory causes (collectively known as contributory hazards), are
identified.

4. Commensurate requirements and constraints6 are identified.

1.6 Purpose and intended audience
The purpose of this RIL is to provide the technical basis to support NRC I&C staff in the
exercise of judgment during licensing reviews that they perform7 on an applicant’s hazard
analysis (HA) of a digital safety system in a nuclear power plant (NPP).

Because the NRC has not previously provided any relevant explicit guidance on review of HA,
this RIL is intended for NRO’s early adopters, to support their development of review guidance
to be piloted in a new project applying new technology in a digital safety system for a small
modular reactor. This application presents a learning opportunity from which NRC expects to
identify needs for future improvements in its review guidance, regulatory guidance, and the
underlying technical basis (i.e., the successors to this document).

The RIL is not intended as an interim or surrogate regulatory guide to licensees or applicants.
However, as a technical basis for the limited scope described in the next subsection, it might
also be useful to stakeholders outside the NRC.

1.7 Scope
The RIL is a response to NRO’s user need request for supporting a specific project. However,
the content is sufficiently generic to be used to generate a successor for broader application
after RES learns from NRO’s first experience (Section 1.7.1). Content has been selected to
support evaluation rather than performance of HA (Section 1.7.2) for NPP digital safety systems
(Sections 1.7.3 through 1.7.5). Content is focused on hazards contributed through systemic
causes, especially inadequacies in engineering (Section 1.7.6). Content is focused on
supporting a deterministic review process (Section 1.7.7).

5 The technical basis for evaluating NPP-level HA is outside the scope of RIL-1101. The interactions
between a digital safety system and its environment (the plant) are within scope.
6 Specifically, in its scoping of HA, RIL-1101 leaves the creation of constraint-satisfying solutions to the
primary development activities. See Section C.2 Reference lifecycle model for hazard analysis in
Appendix C.
7 Or reviews that their agents or third parties perform.

RIL-1101 Page 4

1.7.1 Immediate scope limited to learning cycles
Although the content provided in RIL-1101 is intended to be more broadly applicable, the
adequacy for broader application has to be validated through experience. Known limitations are
identified in this section.

1.7.1.1 Assumptions about areas not well understood
Within the scope described above, RIL-1101 focuses on areas that are not well understood or
recognized (e.g., those that are rooted in systemic causes and those that are contributed to
through engineering deficiencies in system development). To quote from [6]:

Common underlying factors8 involve organizational culture, safety culture, fatigue, other
fitness for duty issues, training, experience, habit, habituation, dysfunctional schedule
pressure, adverse ambient conditions, work-related distractions, and the like.
Nevertheless, addressing ineffective hazard recognition instances, addressing the factors
that resulted in them, and addressing their extents would be a highly cost-effective
initiative.

Judgment used in the selection of coverage of the subject matter is based on assumptions
about what is not well understood. Such assumptions should be reevaluated through learning
cycles before broader application of RIL-1101.

It is assumed that hazards internal to the DI&C system that are contributed by hardware
elements are well understood. Therefore, review of hardware-related HA is addressed in
Section 2.7 only briefly9.

1.7.1.2 Extrapolation from recent licensing experience
Subject matter (e.g., the contributory hazard scenario) was selected in consideration of issues
experienced by the licensing offices in the last several review projects, with the assumption that
those issues indicated a trend. It is possible that new issues10 will surface in upcoming reviews
that were not explicitly addressed in RIL-1101. Its adequacy should be tested through several
learning cycles before it is applied more broadly.

1.7.1.3 Support for application-specific customization of SRP Chapter 7
Selection and extent of treatment of subject matter in this document was further narrowed to
support customization of Chapter 7 of the Standard Review Plan (SRP) [7] specifically for the
needs foreseen for the mPower project.

1.7.2 Focus on evaluation rather than performance of hazard analysis
RIL-1101 is focused on providing the technical basis for exercising judgment during
licensing-review activities. RIL-1101 is not intended as an interim or surrogate regulatory guide
to licensees or applicants. RIL-1101 is not intended to provide guidance on how to perform HA.

Prevalent public standards and guides on HA elaborate on techniques to perform HA, but there
is little information available on criteria for evaluating the results of HA, even though the
systematization of hazard analysis is over four decades old.

8 RIL-1101 scope does not include all of the quoted factors.
9 Appendix C leads to more information through links to supporting references.
10 Example: Hazardous scenarios in systems using FPGA or CPLD platforms for implementation.

RIL-1101 Page 5

1.7.3 Focus on licensing reviews of safety automation
Although results from HA, in general, include requirements for aspects outside the initially
commissioned DI&C safety system (e.g., training, maintenance, and operational and
maintenance environments), RIL-1101 does not provide the technical basis to evaluate
requirements concerning operation and maintenance and the people engaged therein.

Within the scope of the SRP Chapter 7, the scope of RIL-1101 is further limited to the digital
safety automation (the DI&C equipment), including hazards from interaction with its
environment. The operator, the operator-automation interface, and the associated control room
are treated as part of the environment (Section 2.4.1) of the system in scope.

1.7.4 Focus on safety-related systems for NPPs
Prevalent public standards [8] and guides ([9], [10], and [11]) on HA are oriented to the general
case of a system implementing a variety of functions with varying degrees of criticality. In
contrast, RIL-1101 focuses on safety-related systems for NPPs, where the consequence of a
mishap, an unwanted release of radioactivity into the environment (known in HA vocabulary as
“the loss”), is of the highest degree of severity. The scope includes a system realizing a safety
function, as well as any system or element on which the correct timely performance of a safety
function depends (see Appendix K).

Review of analysis for hazards external to the DI&C system, in general, is covered by parts of
NRC’s standard review plan beyond the part applicable to the DI&C systems [7]. RIL-1101
considers external hazards primarily from the perspective of issues with interfaces and
interactions that can affect a safety function allocated to the system being analyzed.

RIL-1101 does not elaborate on reviewing the analysis of hazards from the physical
environment (Section 2.4.1 and Sections E.4 and E.5 of Appendix E), because such hazards
are not new considerations.

1.7.5 Types of systems intended in scope
RIL-1101 describes the evaluation of an applicant’s HA associated with digital safety systems
for new and advanced reactors. The scope of this RIL is limited to a system realizing a safety
function or on which the correct timely performance of a safety function depends (see
Appendix K). Other elements interfacing with, interacting with or affecting the DI&C safety
system are treated as parts of its environment; to that extent, such environment is also within
the scope (see Section 2.4.1).

The scope treats any change to a previously analyzed DI&C safety system as the subject of a
new hazard-analysis review cycle.

1.7.6 Focus on contributory hazards rooted in systemic causes
The RIL is focused on hazards rooted in systemic causes such as inadequacies in engineering
(elaborated in Sections 2.1 through 2.6, 2.8, and 2.9).

Systemic causes represent a special kind of common cause of failure11 (CCF) because their
propagation is often pervasive; that is, there could be many propagation paths, and these are
not easy to discover and analyze. (In contrast, the propagation path from a CCF caused by the
breakdown of a component in a hardware system is relatively easier to identify and analyze.) In

11 “Failure” in this context means “loss of the top-level safety goal.”

RIL-1101 Page 6

a system with complex logic12, recognizing and understanding the cause-and-effect
relationships or influence paths well enough requires explicit identification of a variety of
dependencies (see Appendix K). Some dependencies can be recognized in the analysis of the
system itself (e.g., Sections 2.4.2, 2.6.1,and 2.6.3). Some can be recognized through analyzing
interactions of the system with its environment (e.g., Section 2.4.1). Many other dependencies
occur through organizational processes (e.g., Section 2.2), technical processes
(e.g., Sections 2.3, 2.4.3, 2.5, 2.6.2,and 2.6.4), and supporting or auxiliary processes. RIL-1101
does not enumerate all contributory factors and relationships exhaustively, but uses examples
of scenarios to illustrate certain hazard spaces and examples of related conditions that reduce
the respective hazard spaces. These relationships are causal dependencies, known in the
respective underlying scientific disciplines, and have been validated through expert reviews of
RIL-1101.

1.7.7 Scope excludes risk quantification
Given the focus on hazards rooted in systemic causes, the scope excludes quantification13 of
severity of consequence and probability of occurrence.14 Contributory hazards originating in the
system-development lifecycle or rooted in systemic causes15 are pervasive (permeating) in their
effects. The governing variables are not sufficiently controlled in the current state of practice to
even identify the contributors, their contribution paths, and the effects of their interactions. The
relationships of the systemic causes to the degradation of a safety function are not linear.

1.7.8 Relation between hazard analysis and safety analysis
Hazard analysis is an intrinsic part of safety analysis (see Appendix C.2).

Figure 1 shows the relationship of HA16, as it is treated in RIL-1101, to other activities
contributing to the applicant’s safety analysis report (SAR), as explained below:

1. The result of HA activities (depicted in the upper left sector of Figure 1) is a set of safety
requirements and constraints (included in the design bases) which are verifiable
independently by a third party not involved in the development of the safety system. Also
included are derived requirements and constraints on the design and implementation of the
safety system. This set of requirements and constraints is intended to be a part of the
licensing basis.

2. Activities in the scope of inspections, tests, analyses, and acceptance criteria (ITAAC)
(depicted in the upper right sector of Figure 1) verify that these requirements and constraints
have been satisfied. These verification activities are not a part of reviewing hazard analysis
as it is delineated in RIL-1101.

3. Figure 9 shows the relationships of HA activities with mainstream system-development
activities and verification activities.

4. Whereas each verification activity yields corresponding evidence (e.g., that a certain item
(such as hardware, firmware, or software) has met the requirements and constraints

12 For example, in the form of software.
13 Scope also excludes qualitative classification or gradation.
14 Exception: Section 2.7 pertaining to hardware components.
15 The focus of RIL-1101.
16 Figure 1 is a simplified depiction; see its note.

RIL-1101 Page 7

allocated to it), overall verification includes the integration of all the various evidence items
(depicted in the lower sector of Figure 1) in a way that demonstrates that the overall safety
requirements and constraints of the system have been satisfied. These activities are also
not a part of hazard analysis as it is delineated in RIL-1101.

5. The safety analysis report (SAR), depicted by the circle in the center of Figure 1, includes
the validated results of HA (i.e., validation that safety requirements and constraints have
been identified correctly, completely, consistently, and unambiguously) as well as the results
of verification (i.e., the requirements and constraints have been satisfied).

Note: Figure 1 is simplified for illustrating the relationship with the overall safety analysis,
omitting the following:

1. HA is iterated at each phase in the development lifecycle of a system (see Figure 9)
and in the development lifecycle of each of its elements.

2. Iteration at any phase might reveal that the phase has introduced a new hazard.

3. The corrective action might simply be a revision within that phase or it might require
a change in a preceding phase, invalidating the result of the preceding phase.

4. The latter case might require multiple iterations and tradeoffs, making the analysis
correspondingly more difficult.

5. Verification and validation (V&V) activities during the mainstream system
development are also iterative (from discovery of an anomaly through identification of
root cause(s) and performance of corrective action on the artifact to performance of
corrective action on the process), with each change generating another iteration.
Examples of activities included in corrective actions include the following:

5.1. Identifying an additional constraint,

5.2. Making an assumption explicit, and

5.3. Formulating a task to validate an assumption.

 Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis.

RIL-1101 Page 8

1.8 Organization of RIL-1101
Section 2 provides the technical basis to support NRC I&C staff in exercising judgment during
the review of an applicant’s HA. As requested by NRO (the sponsoring User), supporting
explanatory information is in the appendices. For example, Appendix C, which is incorporated
by reference in item H-0-1G of Table 1 in Section 2.1, summarizes the state of the art in HA.

Section 2 is organized by groups of contributory hazards, as explained below.

1. These groupings foster different perspectives on (or projections of) intertwined17 issues, and
are not intended to be mutually exclusive partitions.

2. Sections 2.1 through 2.3 group contributory hazards that are applicable to all phases of the
development lifecycle; typically, these are controlled before starting the development of a
particular system.

3. Sections 2.4 through 2.9 group contributory hazards from the perspectives of individual
phases of the development lifecycle.

4. While contributory hazards might manifest themselves or might be discovered in any of
several phases of the development lifecycle or levels of integration of a digital safety
system, the RIL attempts to place the item in a group corresponding to the earliest
prevention opportunity.

5. Relationships between scenarios of contributory hazards (illustrating corresponding hazard
spaces) and conditions that reduce these hazard spaces are organized in tables as follows:

5.1. The title of each table (explained in the narrative introducing it) bounds the scope and
context of entries in the rows of the table.

5.2. In a particular row, a left-hand cell includes an example of a scenario18 illustrating some
hazard space.

5.3. A right-hand cell, associated with a contributory hazard in a row, includes an example of
a condition that reduces the respective hazard space. Many such conditions could be
associated with a particular scenario.

5.4. Each contributory hazard is uniquely identified with a label of the type “H-alpha-<i>”

5.4.1. The “H-alpha-” part of the label in the headings of the tables’ “ID” columns forms
the start of the label for the values in each row and is not repeated in any row.
Examples are “H-0-”, “H-culture-”, and “H-OTproc-”; the heading “H-0-“ would be
combined with the value “7” in a cell below it to derive the full label “H-0-7”. The
prepended symbol represents the thematic relationship of items within a table, as
conveyed in the caption of the table. For example, in Table 4, the symbol
“H-OTproc-“ prepended to an item ID in the left column of a row indicates that it is a
scenario of contributions to hazards through the organization’s technical processes.
Similarly, in Table 3 “H-culture-” indicates that it is a scenario of contributions to
hazards through the organization’s culture.

17 “Many-to-many” interrelationships exist.
18 In many cases, the scenario is described as a class or category of scenarios.

RIL-1101 Page 9

5.4.2. The “<i>” portion of the label is a numeric character that is unique to each
scenario of contributory hazards.

5.4.3. For example, H-SAE-1 is a complete label for a scenario of contributory hazards.

5.5. A label of the type “H-alpha-<i>-G<j>” identifies a condition “G<j>” that reduces the
“H-alpha-<i>” space.

5.5.1. For example, H-SAE-1G1 is a condition associated with H-SAE-1.

5.5.2. In this manner, a common prepended symbol represents the corresponding
commonality in the relationship of a scenario of contributory hazards and conditions
which reduce the corresponding hazard space.

6. Hyperlinks enclosed in square brackets [] are used selectively to identify other salient
relationships of the following kinds:
6.1. between scenarios of contributory hazards, possibly across groups (tables);
6.2. between scenarios and conditions reducing the respective hazard spaces; and
6.3. between conditions reducing the various hazard spaces.

7. The symbol ↑ as used in the form “[H-culture-8↑]” in a cell indicates that the item in the cell
“contributes to” or is “derived from” the linked item (e.g., H-culture-8).

8. The symbol ↓ as used in the form “[H-S-1.1G1↓]” in a cell indicates that the item in that cell
“requires” the linked item (e.g., “H-S-1.1G1”).

9. Not all of the many-to-many relationships are hyperlinked.

10. Where needed, a note structure, distinguished by indentation, font type, and font size
provides a brief explanation or example for an “H-alpha-<i>” or “H-alpha-<i>-G<j>”
paragraph.

11. Enclosure within braces {} in a cell indicates that the symbol prepending the enclosure
applies to each enclosed item.

12. Enclosure within parentheses () in a cell indicates a reference for more information on the
item in the cell. For example, in Table 1, cell ID H-0-3G1, the enclosure (in common position
(CP) 2.1.3.1 in [12]) indicates that the cited reference has more information about the
condition, “the requirements … are validated.”

13. A link to an item in an appendix leads to further elaboration and background.

Section 3 explains how HA review fits in the regulatory framework.

Section 4 summarizes the contribution of RIL-1101 and Section 5 outlines the follow-on
research and development (R&D) identified in the course of this work (e.g., unresolved review
comments).

Where a word or expression is used in a meaning more specific than or different from the
common usage defined in mainstream dictionaries, it is defined in Appendix A: Glossary. Its first
occurrence is hyperlinked to that definition.

RIL-1101 Page 10

2 CONSIDERATIONS IN EVALUATING HAZARD ANALYSIS
RIL-1101 primarily addresses factors contributing to the degradation of a safety function that are
rooted in engineering19. These factors are part of a network of causes or dependencies (see
Appendix K) that result in some deficiency in the system (or deficiency in prevention of
interactions), which could lead to the degradation of a safety function. RIL-1101 refers to these
factors as contributory hazards.

However, recent experience has revealed that propagation paths of hazards are not always
linear and that cause-and-effect relationships are not always direct chains. The indirect
propagation of effects (e.g., degradation of a safety function), contributory interactions, and
propagation paths are not well understood. For example, [13] characterizes these as “issues
that transcend the functions of individual components and involve interactions between
components within the system as well as the interaction of the system with the environment.”
Traditional techniques for hazard analysis, as used in common practice, such as fault-tree
analysis (FTA) [14][15] and failure modes and effects analysis for design (DFMEA) [16][17], do
not support the discovery of such contributory hazards well. RIL-1101 is intended to address
these gaps.

Experience with complex systems in general [18], and with digital systems for critical functions
in diverse application sectors in particular, has revealed that common practice does not ensure
the absence of conditions contributing to hazards.

The difficulties that the NRO experienced (as it reported to the Advisory Committee on Reactor
Safeguards (ACRS) [19]) are examples of the more general trends of increasing system
complexity and increasing contribution of systemic causes towards malfunctions. Generally

19 As opposed to factors arising from random hardware failures during operation.

Controller

(organization, team,
individual, or automated system)

Controlled entity

(process, system, or device

Control signal

(command, corrective action, or
actuation)

Process state

(sensed, measured, estimated, or
assessed)

Figure 2: Example of a dependency structure (cyclic graph).

RIL-1101 Page 11

accepted engineering standards20 do not provide sufficiently specific guidance to ensure their
technically consistent and efficient application to digital systems with such complexity. Such
reviews require significant additional information from the applicant, significant additional review
effort, and reliance on judgment to address the gap in the existing review guidance. These gaps
were identified in [20] as sources of uncertainty in the assurance of digital safety systems. As
depicted in Figure 3, RIL-1101 focuses on the challenges from these uncertainties,
characterized as contributory hazards, and identifies corresponding conditions that reduce the
respective hazard spaces.

Figure 3: Contributory hazard space in focus.

2.1 Evaluation of Overall Hazard Analysis
From the wide range of approaches, methods, and techniques to perform hazard analysis, the
selection should be well-matched to the object21 being analyzed. Recognizing that, often,
hazardous conditions are obscure and difficult to identify, the performers (typically a team)
should have the requisite22 competence. The controls that correspond to the hazardous
conditions should be adequate. The analysis should flow down to all the elements and factors

20 This expression is mentioned in 10 CFR 50.34(a)(ii)(B); examples are cited in the NRC’s regulatory
guides.
21 For example, techniques in common practice such as FTA and failure modes and effects analysis
(FMEA) may not be very helpful in a situation confounded with interactions and feedback paths.
22 Proficiency only in FMEA for random hardware failures might not suffice.

RIL-1101 Page 12

on which the safety function or its integrity depends. Table 1 includes such overarching
considerations in evaluating the HA of a digital safety system. Because these factors affect the
quality of HA broadly, they are treated as contributory hazards in Table 1. Key considerations
are explained in notes after the table and in Appendices C and F.

Table 1: Considerations in broadly evaluating hazard analysis
Contributory hazards Conditions that reduce the hazard space
ID
H-0- Description

ID
H-0- Description

1 HA approach is not suitable
to the system, element,
intermediate-phase work
product, process, or activity
being analyzed.

1G The selected HA approach is well-matched to the system
aspect, element, development phase, or work product
being analyzed, with considerations discussed in
Appendix C.

2 Competence in performing
HA is not adequate for the
system being analyzed.
(Also see H-SRE-1.)

2G1 The HA is performed with the requisite complement of
competence; see Appendix C.4 and [H-culture-6G2].
Also see Appendix F.4.

3 Validation is inadequate or
impaired because people in
the developer’s organization
are unable to think
independently.
Intra-organizational reviews
suffer from “groupthink.”
See Appendix F.4.4.

3G1 The HA is validated, including elements on which it
depends (see Appendix K) [H-0-8↓, H-0-9↓], and
including the resulting requirements and constraints, (in
CP 2.1.3.1 in [12]) independently, without exacerbating
H-culture-9. Also see Appendix F.3.
1. The HA-validation team has the requisite competence

[H-0-2G1].
2. The HA-validation team provides perspectives and

background different from the team performing the
HA.

3G2 See Appendix F.2 (diversity and independence) and F.4.4
(groupthink).

RIL-1101 Page 13

Contributory hazards Conditions that reduce the hazard space
ID
H-0- Description

ID
H-0- Description

6 Hazard controls needed to
satisfy system constraints
(which prevent hazards) are
inadequate.

6G1 Hazard controls are identified and validated to be correct,
complete, and consistent.
[H-0-7G1↓]

7 Flowdown from the controls
[H-0-6-G1↑] to verifiable
requirements and
constraints is inadequate.

7G1 Requirements and constraints [H-0-6G1↑] are formulated
and validated to be correct, complete, and consistent in
consideration of preference23 order 1 through 4 as follows:

1. Prevent hazard

2. Eliminate hazard

3. Contain hazard (prevent propagation) [H-SR-4G4↓]

4. Monitor, detect and mitigate24 hazard

4.1. Monitor [H-SR-4G1↓]

4.2. Detect [H-SR-4G2↓]

4.3. Intervene [H-SR-4G3↓]

4.4. Notify (some independent agent)25 [H-SR-4G5↓]

4.5. (Recipient26 of the notification) Perform
safety-supporting function

4.6. Confirm safe state

8 The analysis is not
propagated to elements in
an NPP on which the
system being analyzed
depends or on which the
safety functions allocated to
the system depend.
See [H-Dep-1.1↓] in Table 2.

8G1 All dependencies (see Appendix K and Section C.1.3 of
Appendix C) are identified and analyzed to confirm that a
safety function is not degraded.
Also see H-culture-12G2.

9 The analysis is not
propagated to processes
and process activities on
which the integrity of the
system being analyzed
depends or the safety
functions allocated to it
depend.
See [H-Dep-2↓] and [H-Dep-
3↓], in Table 2.

9G1 All dependencies are identified and analyzed to confirm
that a safety function of the engineered system is not
degraded. Processes include organizational processes,
management processes, supporting processes, and
technical processes.
Also see H-culture-12G2.

23 Based on the extent of reduction of hazard space, potential fault space, and uncertainty space.
24 To maintain a safe state.
25 For example, the operator or another automated device or system.
26 For example, the operator or another automated device or system.

RIL-1101 Page 14

Contributory hazards Conditions that reduce the hazard space
ID
H-0- Description

ID
H-0- Description

10 Propagated effect of
changes introduces
inconsistencies, invalidating
previously performed HA.

10G1 Starting from the initial HA performed on the functional
concept (in CP 2.1.3.2.3 in [12]), the HA is revised at
every phase27 of the development lifecycle, with
change-control management and configuration
management.
Examples of contributory hazards that might be
discovered include:
1. Hardware faults
2. Unanalyzed conditions [H-S-1.1.1G1↑].

10G2 The HA has been iterated until no new hazards are
identified [H-0-8G1↑]:

1. No added monitoring, detection, mitigation or other
requirement has introduced some new hazard.

2. No complexity-increasing side effect from the change
has introduced some other yet-unanalyzed hazard.

10.1 Hazard-introducing effect of
iterations is not well
understood.

10.1G H-0-9G1↑
H-0-10G1↑
H-0-10G2↑

11 Required hazard-control
action is degraded.

11G1 Each required control action is analyzed for ways in which
it can lead to the hazard, such as:

1. A control action is not provided; for example:
1.1. Data sent on a communication bus is not

delivered.

2. A control action is provided when it is not needed.

3. An incorrect state transition occurs
(e.g., a combination of items 4 and 5 below).

4. An incorrect value is provided; for example:
4.1. Invalid data is provided.
4.2. Stale input value is treated inconsistently.
4.3. An undefined type of data is provided.
4.4. Data is provided in an incorrect message format.
4.5. Incorrect initialization occurs.

5. A control action is provided at the wrong time or out of
sequence.

6. A control action is provided for too long a duration
(e.g., for continuous-control functions).

7. A control action is provided for too short a duration;
for example:
7.1. A signal is deactivated too early (e.g., for

continuous-control functions).

8. A control action is intermittent when it is required to be
steady; for example:
8.1. Chatter or flutter occurs.

27 Also apply these considerations to successive phases of the system-development lifecycle.

RIL-1101 Page 15

Contributory hazards Conditions that reduce the hazard space
ID
H-0- Description

ID
H-0- Description

8.2. A pulse or spike occurs.
8.3. Degradation is erratic.

9. A control action interferes with another action; for
example:

9.1. It prevents access to a needed resource; for
example:
9.1.1. It is affected by the “babbling idiot”

problem.
9.1.2. It locks up and does not release the

resource

9.2. It corrupts needed information.

10. A control action exhibits Byzantine behavior.
12 Hazards in modes of

operation other than the “at
power” normal mode, or in
transition from one mode to
another, are not adequately
understood or analyzed.

12G1 HA is performed for all modes of operation (in
CP 2.1.3.2.7 in [12]) and corresponding requirements &
constraints are derived (see checklist in Appendix H for
examples).

As HA evaluation progresses further, the selection of information from Sections 2.2-2.9 will be
case-specific, depending on the nature of the object and completeness of product-based
analysis.

2.1.1 Considerations for hazards within the system being analyzed
Referring to Table 1, the following notes explain certain contributors to hazards within the
system being analyzed and show relationships to later items in this RIL.

H-0-{6, 7, and 11}: These factors address the flowdown from direct hazards to system
constraints to required controls to verifiable requirements and constraints. Sections 2.2
through 2.9 elaborate on hazard contributors encountered in the flowdown.

H-0-{8 and 9}: Whereas “ineffective hazard recognition” has been recognized as a
serious issue [6], unrecognized dependencies (see Table 2 and Section C.1.3 of
Appendix C) become an increasing contributor to this issue as the complexity of
organizations, processes, and systems increases. In addition to the lack of awareness,
lapses could occur because of inability to track and maintain a consistent understanding
of the dependencies.

H-0-8: The extent of dependencies in a system and its elements might not be fully
understood or might not be understood in the same way by all parties engaged in
developing the system; alternatively, multiple changes might introduce obscurity. The
intent of reviewing for dependencies is to check that the system on which HA is to be
performed and its context (environment) are correctly identified, that the dependencies
are correctly understood, that the conditions that might degrade a safety function
(external and internal) are identified, and that the commensurate constraints are
formulated (see Table 2).

2.1.2 Considerations for hazards contributed through processes
When absence of hazards cannot be ascertained from HA of the system, certain residual
uncertainties are addressed by extending HA to the corresponding process

RIL-1101 Page 16

dependencies. When HA has to be extended to processes, a third-party certification of
the system could provide the requisite confirmation that all process-related
dependencies have been identified and their effects analyzed.

H-0-9: The extent of dependencies on processes, including the physical processes in the
plant, might not be fully understood. For example, Figure 4 depicts an abstraction of
process-related direct dependencies. Figure 4 is an example of a generic dependency
structure, illustrating how the transformation of a work product depends on the process
activity and factors on which that activity depends. This process dependency structure
can be applied to organize and understand the contribution of organizational processes
(Section 2.2) as well as technical processes (Section 2.3). This process dependency
structure is also applicable to any other creative but deterministic activity from which
predictable, verifiable, and analyzable results are needed. Each activity step is affected
by the procedures and resources employed in performing that activity. As shown in
Figure 4, examples of resources include some tool, other aid, information or competence
(e.g., H-culture-6G3) of the performer as symbolized with the cross in a circle. Note that
information, tool, or other aid could also depend upon competence. The quality of the
work product depends on the quality of the procedures and resources and on their use;
that is, any deficiency is a contributory hazard. The following are examples that indicate
less-than-adequate controls and thus less-than-adequate understanding of
interdependencies across processes.

1. Organizational processes lack such controls; or

2. The organization does not apply such controls to the feeder processes, food chain, or
supply chain; or

3. The organization does not plan for such understanding at the system-concept phase
of the lifecycle.

4. Adequacy of competence of indirectly employed human resources (in Figure 4,
symbolized with the dotted cross in a dotted circle) are not validated.

H-0-10.1: When HA is performed at some stage in the development lifecycle of the
system and its elements, additional safety requirements and constraints could be
discovered. Inclusion of those requirements28 could change the system concept or
design, requiring another HA cycle to evaluate the impact of such changes. The
cumulative and cascading effects of these iterations might not be well understood, with
the potential to miss subtle implications of a change.

28 Incorrect, incomplete, inconsistent, or ambiguous safety requirements can lead to hazards.

RIL-1101 Page 17

Figure 4: Factors influencing the work product of development.

Table 2: Examples of contributions to hazards through interdependencies
Contributory hazards Conditions that reduce the hazard space
ID
H-Dep- Description

ID
H-Dep- Description

1 Unrecognized
interdependencies in
the system:
Interdependencies in the
system, its elements,
and its environment (see
H-ProcState-4) are not
understood, recognized,
or explicitly identified,
leaving some
vulnerability, which can
lead to the degradation
of a safety function.
[H-0-8↑]

1G1 All interdependent systems, elements, processes, and
factors affecting a safety function are identified.
See H-culture-{8G2 and 9G2}.

1G1.1 Design rationale is recorded and tracked. See
Appendix F.2.

1G2 The items identified in accordance with H-Dep-1G1 are
configuration items.

1G3 The interdependencies or relationships among these
items are unambiguously described, especially those
affecting emergent behavior.
Also see H-culture-{12G2 and 12G3}.

1G4 Semantics of the relationships are explicit:
Relationships might not merely be sequential (chained)
or tree structures, but also cycles (often feedback
control loops).29 [H-ProcState-2G1↑]

1G5 The interrelationships of these configuration items are
identified (e.g., by means of an overall NPP-level
architecture).

29 Contrast this situation with the typical chain of events initiated by the failure of a hardware component.

Intent, needs, requirements, specifications, procedures, and
constraints

Incoming item, e.g., the
work product of preceding phase

Process
activity Work Product

Resources

applied to

Aids

Information

Other

Tools

Human

RIL-1101 Page 18

Contributory hazards Conditions that reduce the hazard space
ID
H-Dep- Description

ID
H-Dep- Description
1G6 These interrelationships are also a configuration item

or set of configuration items.
1G7 Independent verification assures that these

configuration items represent reality.
[H-0-8.1G1↑]

1G8 The effects of these dependencies are analyzed to
prove that the safety function is not degraded.

1G9 Any change in any of these configuration items is
managed through a change-control process, with an
explicit analysis of the impact of change. (Generalized
from CP 2.7.3.1.5 in [12].).
See Appendix F.2.

1G10 The change-impact analysis is independently verified.
1G11 The change-impact analysis is a configuration item.

1.1 Dependencies through
the environment of the
digital safety system are
not recognized; for
example:
• Dependencies on the

physical processes
• Dependencies on

degraded behavior of
related
instrumentation and
peripheral equipment

1.1G1 The effects of these dependencies are analyzed to
prove that the safety function is not degraded.

1.1G2 H-culture-8G2

2 Unrecognized
interdependencies in
the development
process:
Interdependencies in the
system-development
process, feeder
processes, supporting
processes, elements,
and environments are
not understood, leaving
some vulnerability,
which can lead to a
deficiency in the system,
which could in turn lead
to the degradation of a
safety function. [H-0-9↑]

2G1 All interdependent processes (including feeder and
supporting processes), resources used in these
processes, and factors affecting these processes and
resources are identified (e.g., see Figure 4).
See H-culture-{8G2 and 9G2}.

2G2 These are configuration controlled items (henceforth,
configuration items).

2G3 The interdependencies or relationships among these
items are unambiguously described, including cycles
created through feedback loops30.
Also see H-culture-{12G2 and 12G3}.

2G4 The interrelationships across these configuration items
are identified (e.g., by means of an overall process
architecture) and are also a configuration item or set of
configuration items.

2G5 Some combination of independent assessment, audit,
and verification ensures that these configuration items
accurately represent reality.

2G6 Any change in any of these configuration items is
managed through a change-control process.

2G7 The effects of these dependencies are analyzed to
prove that the safety function is not degraded.

2G8 H-culture-8G2

30 These can also be analyzed as control loops influencing safety properties of the affected system.

RIL-1101 Page 19

Contributory hazards Conditions that reduce the hazard space
ID
H-Dep- Description

ID
H-Dep- Description

3 Dependencies through
supporting services and
processes are not
recognized.

3G1 The effects of these dependencies are analyzed to
prove that the safety function is not degraded.
See H-culture-{8G2 and 9G2}.

3G2 H-culture-8G2
4 Dependencies through

resource31 sharing are
not recognized;
examples might be:
• Contention for the

shared resource
• Corruption of the

resource (e.g., data)

4G1 The effects of resource sharing are analyzed to prove
that the safety function is not degraded.
See H-culture-{8G2 and 9G2}.

Note: Whereas “ineffective hazard recognition” has been recognized as a serious issue [6],
unrecognized dependencies are an increasing contributor to this issue because the complexity of
organizations, processes, and systems is increasing. In addition to the lack of awareness, lapses could
occur because of inability to track and maintain a consistent understanding of the dependencies. The
state of practice in representing and analyzing such dependencies is relatively weak. Also see Appendix
K.

2.2 Evaluation of hazard analysis—organizational processes
Organizational processes include management processes, infrastructural processes, and other
supporting processes. The term “supporting processes” includes the change-impact analysis
process and maintenance processes on which the system design is predicated.

The culture of an organization with respect to safety engineering and the processes of
managing and engineering safety (included within “organizational processes”) have pervasive,
permeating effects; that is, the contribution of culture-dependent factors cannot be analyzed32
as causal events. In software-dependent systems, where the hazard space is much larger than,
say, in engineered mechanical structures, these contributors can render the hazards
unanalyzable.Table 3 identifies some common concerns.

Table 3: Examples of contributions to hazards through an organization’s culture
Contributory hazards Conditions that reduce the hazard space
ID
H-culture- Description

ID
H-culture- Description

1 The reward system favors
short-term goals, placing cost and
schedule over safety and quality
(sliding on a slippery slope, not fully
cognizant of the cumulative effect
of compromises).
(Adapted from Annex B in [21].)

1G1 The reward system supports and
motivates the effective achievement of
safety. Safety is the highest priority.
Also see Appendix F.3.

1G2 The reward system penalizes those who
take shortcuts that jeopardize safety or
quality.

31 Examples might be: Skilled resources for development and computing memory or processor time
during execution.
32 This aspect of HA roughly corresponds to, but is significantly broader than, the HA mentioned in
Table 1a in [10].

RIL-1101 Page 20

Contributory hazards Conditions that reduce the hazard space
ID
H-culture- Description

ID
H-culture- Description
1G3 The organization has integrity.33
1G3.1 The process34 state is consistent between

reality and its representation.
1G4 Lifecycle economics supporting safety

and quality drive the organization.
2 Accountability (e.g., as illustrated in

Figure 2 and Figure 4) is not
traceable; achievement of safety
cannot be assured.
Individual accountability becomes
lost, because (often without careful
reflection) individuals make
decisions and evaluate information
based on the master premise of the
organization. See Appendix F.2.

2G1 The process ensures accountability for
effective achievement of safety.

2G1.1 Influencing factors are organized in an
effective control structure35 (Figure 2)
without exacerbating H-culture-9. Also
see Appendix F.3.

2G2 Management commitment to safety
motivates effective achievement of safety.

3 Personnel assessing safety, quality,
and their governing processes are
influenced unduly by those
responsible for execution.
[H-culture-1↑]

3G1 Although information in the processes for
safety, quality, verification & validation,
and configuration management should be
functionally integrated with the main
development process to prevent
information loss, the performing
personnel are independent (free from
undue influence) without exacerbating
H-culture-9. Also see Appendix F.3.

4 Personnel feel pressure to conform:
1. “Stacking the deck” when

forming review groups.
2. Dissenter is ostracized or

labeled as “not a team player”
3. Dissent reflects negatively on

performance reviews.
4. “Minority dissenter” is labeled or

treated as a “troublemaker” or
“not a team player” or
“whistleblower.”

5. Concerned employees fear
repercussion. [H-culture-1↑]

4G1 Such behavior is discouraged and
penalized. See Appendix F.4.4.

4G2 The process uses diversity to advantage.
1. Intellectual diversity is sought, valued,

and integrated in all processes.
2. “Speaking up” (raising safety

concerns) is rewarded.
3. See Appendix F.4.2 and F.4.4.

4G3 Supporting communication and
decisionmaking channels exist and the
management encourages their usage
(e.g., an individual can express safety
concern directly to those ultimately
responsible).
See Appendix F.4.2.

4G4 Each identified hazard is logged and
tracked to its closure, as explained in
subsections C.3.2 and C.3.3 of
Appendix C.
See Appendix F.

33 Integrity: Honesty and strength of will to make a safety-conscious decision even when it is not popular.
34 Applicable to any activity in any process in the organization that is influenced by its management.
35 A comprehensive safety-governance structure that includes the higher levels of management.

RIL-1101 Page 21

Contributory hazards Conditions that reduce the hazard space
ID
H-culture- Description

ID
H-culture- Description

4.1 Diminished team ability to seek and
use intellectual diversity.

4.1G1 Avoid negative behavior and encourage
expression of diverse viewpoints, as
explained in Appendix F.4.3.

5 Management reacts only when
there is a problem in the field.
(Adapted from Annex B in [21])

5G1 Safety and quality issues are discovered
and resolved at the earliest stage in the
product lifecycle. See Appendix F.

5G2 The organizational culture has a strongly
established master premise of “safety” as
the basis for decisions and daily activity.
This becomes the guiding premise for
analyzing and reducing the hazard space.
See Appendix F.

6 The quality and quantity of the
required resources are not planned
or allocated in a timely manner.

6G1 Resources required36 are estimated with
adequate accuracy37 in a timely manner.

6G2 The required resources are allocated in
time.

6G3 Skilled resources have the necessary
competence to perform the assigned
activity. [H-0-2G1; H-SRE-1G{1, 2,
and 3}]

6G4 Teams ensure that their knowledge and
mental models are properly considered
by using communication processes that
improve collective mindfulness. See
Appendix F.4.

7 A critical cognitive task is
interrupted to switch its assignee
across multiple tasks; such
interruptions could increase the
potential for mistakes, thereby
increasing the potential fault space
or contributory hazard space.
(Adapted from Annex B in [21].)

7G1 Run critical cognitive tasks to completion
(and make this the default practice of the
organization). Interruption is allowed only
when the task has progressed to a stable,
well-understood state, so that the
interruption does not increase the hazard
space.

8 Processes do not produce
deterministic, predictable results.

8G1 A defined, documented, and disciplined
process is followed in all dimensions at all
levels, as needed for consistent
achievement of safety; for example:
1. Management
2. Engineering
3. Procurement
4. Verification
5. Validation
6. Safety assessment
7. Safety audit

36 Such as the type of competence, degree or level of competence or proficiency, and the amount of effort
and time.
37 Implied constraint: Processes are adequately designed and controlled. [H-0-9G1, H-culture-8G1, and
H-OTproc-1G]

RIL-1101 Page 22

Contributory hazards Conditions that reduce the hazard space
ID
H-culture- Description

ID
H-culture- Description
8G2 The organization follows disciplined

communication and cognitive processes
to achieve collective mindfulness, to know
when to adjust and adapt the
standardized processes, and to learn
from the shortcomings. See Sections F.2
and F.4 of Appendix F.

9 When system lifecycle activities are
distributed across multiple
organizations or parts of the same
organization, safety-relevant
information38 is not communicated
efficiently, letting key items of
information “fall through the
cracks.”
See note at end of table.
[H-SRE-7↓]

9G1 Cross-organizational dependencies are
understood clearly.
Also see H-culture-8G2.

9G1.1 The organization maintains
cross-organizational connections that
improve collective mindfulness (for
example, by using working groups). See
Appendix F.

9G2 Organizational culture promotes open
collaborative communications across
boundaries to realize a system that
achieves its safety goals.
See H-culture-{12G2 and 12G3}.

9G3 Decomposition of safety goals from NPP
level analysis and allocation to
safety-related systems is complete,
correct, consistent, and unambiguous.

10 Mistakes are repeated. 10G1 Continuous improvement is integral to all
processes. See Section F.4 in
Appendix F.

11 Heavy dependence on testing39 at
the end of the product development
cycle.
By that stage:
1. It often becomes infeasible to

correct the problem soundly.
2. Patches increase complexity and

impair verifiability.

11G1 H-culture-5G1
11G2 Technical processes are designed to

prevent safety and quality issues as early
in the development lifecycle as possible.
See Appendix F.

11G3 Processes for safety, quality, V&V, and
configuration control are planned40 and
designed to prevent and discover safety
and quality issues as early in the
development lifecycle as possible.
See H-culture-{12G2 and 12G3} and
Section F.2 of Appendix F.

12 Dependence on implicit information
(including implicit assumptions).
[H-ProcState-4↑] and [H-SR-11↓]

12G1 All information on which assurability of
safety depends is explicit and
configuration-controlled.

38 Implied constraint: H-0-9G1
39 It is unlikely that testing as the only means of verification will suffice.
40 Examples of work products: The safety plan, quality plan, and V&V plan, including plan for
demonstrating completeness of coverage.

RIL-1101 Page 23

Contributory hazards Conditions that reduce the hazard space
ID
H-culture- Description

ID
H-culture- Description
12G2 Even while making information explicit

and unambiguous, the organization
maintains collective mindfulness by
persisting in the evaluation of mental
models and the development of more
accurate and nuanced mental models.
This necessarily involves continuous
situational awareness of the context and
involves the cultivation of diverse
perspectives. See Appendix F.

12G3 The organization establishes a system for
tracking the bases and premises of
engineering decisions. See Section F.2 of
Appendix F and Appendix J.

Note for H-culture-9: The quality of cross-disciplinary, cross-organizational communications is affected
by stretched lines of communication across the NPP operator (the utility licensee), the supplier of the
plant, the supplier of the DI&C system, and the supplier of components of the DI&C system.

2.3 Evaluation of hazard analysis—technical processes

Improperly designed or executed technical processes can lead to deficiencies in a system.
Examples of technical processes include, but are not limited to the following:

• Requirements engineering—see Section 2.5.
• Architecture engineering—see Section 2.6.
• Detailed design—see Section 2.8.
• Implementation—see Section 2.9.
• Verification activities by those performing these development activities.
• Third-party verification.
• Process assessment.
• Process audit.

Examples of some general contributory hazards and conditions to reduce the respective hazard
spaces are given in Table 4 (adapted from Appendix A.1 in [20]), premised on the satisfaction of
constraints identified in Table 3.

Table 4: Examples of contributions to hazards through technical processes
Contributory hazards Conditions that reduce the hazard space
ID
H-OTproc- Description

ID
H-OTproc- Description

1 Technical processes are not
deterministic [H-culture-8↑]; that
is, correctness of results cannot
be assured.

1G The organization’s technical processes are
defined to such a level of detail that, for
each work element involved, there is a
specification of the competence, tools,
information, and other resources required
(see Figure 4) to execute that work element
correctly and to integrate the results of such
work elements correctly [H-culture-8G1↑].
Also see [H-culture-8G2].

RIL-1101 Page 24

Contributory hazards Conditions that reduce the hazard space
ID
H-OTproc- Description

ID
H-OTproc- Description

2 Any process variable in any
work element might contribute to
some deficiency, if it is not
adequately controlled.
[H-OTproc-1↑]

2G Each process variable in each work
element is controlled and supported with
the proper methods, tools, and competence
to execute that work element correctly and
to integrate the results of such work
elements correctly.
[H-OTproc-1G↑] (Figure 2 and Figure 4)

3 Cognitive load (or intellectual
complexity) imposed by a
specified work element exceeds
the capability of assigned
personnel. See Note.
[H-culture-6↑]

3G1 The cognitive load imposed by a specified
work element, including an integration
activity, is assured to be well within the
capability41 of personnel available to
perform that activity.
Also see [H-culture-6G3].

3.1 Difficulty of understanding the
architecture (if it is inadequately
described, for example) is a
contributor to the cognitive load.

3.1G1 The system architecture is analyzable and
comprehensible. [H-OTProc-3G1↑],
[H-S-1.1G1↓], and [H-S-2G6↓].

4 Mistakes occur42 (leading to
deficiencies in the system);
however, technical processes
are not designed with the
necessary robustness and
resilience to protect them from
such mistakes.

4G1 The organization’s technical processes
include processes to detect and recover
from mistakes (e.g., verification and audit).

4G2 [H-culture-8G2].

5 The organization believes
incorrectly that its processes are
adequate, exposing it to
unknown sources of deficiencies
for which it cannot identify the
causes.

5G1 The process is assessed and certified
independently.

5G2 Qualified independent resources assess the
process.
[H-culture-6G1 and H-culture-6G2]

5G3 [H-culture-8G2].
6 The processes in real-life

execution deviate from the
designed processes, resulting in
exposure to unknown sources of
deficiencies, for which it cannot
identify the causes.

6G1 [H-culture-{1G3.1 and 2G1.1}
6G2 The process in execution is audited

independently.
6G3 Qualified resources are available to audit

the process.
6G4 [H-culture-6G4 and H-culture-8G2].

Also see and Appendix F.4.

7 Less accumulated experience
and reusable results than there
are for the systems of the
previous generation; for
example, shorter lifecycles of
implemented systems or
configurations, leading to:
• Less accumulated

experience on the same item
• Changing environments for

the same item

7G1 [H-0-9G1]
H-culture-{2G1.1 and 8G1}
H-OTproc-{1G and 2G}

7G2 More rigorous analysis—see Table 1 and
Table 3.

Appropriately conservatively derived
requirements and constraints.

7G3 [H-culture-{8G2, 12G2, and 12G3}]

41 This may require certification of personnel through a standardized process.
42 Perfection in human performance is not achievable – at least, not in a sustainable manner.

RIL-1101 Page 25

Contributory hazards Conditions that reduce the hazard space
ID
H-OTproc- Description

ID
H-OTproc- Description

8 Engineering models lack
adequate fidelity to reality;
i.e., modeling abstractions are
not sound.

8G1 Modeling abstractions are validated.
8G2 [H-culture-8G2]

Note for H-OTproc-3: Increasing complexity [18] of systems, processes, and organizations (involving
people from multiple organizations, multiple disciplines, and multiple locations) and increasing content of
software (or other implementation of logic) are increasing the contribution to hazards from engineering
activities; for example:
• Requirements engineering (elaborated in Section 2.5; HA results in safety requirements &

constraints).
• Architecture engineering (elaborated in Section 2.6).
• Software engineering (elaborated in Sections 2.6.4 and 2.8).

2.4 Evaluation of Hazard Analysis—System Concept
The system concept, sometimes known as the functional concept (of the intended system), is
described in terms of the initial requirements associated with it and its relationship with its
environment, including the boundary and the assumptions (see Appendix J) on which the
concept is based. Sometimes, the associated requirements are embodied in a “concept of
operations” document. Sometimes HA43 of a functional concept is called preliminary hazard
analysis (PHA44); also see Appendix C.2.

In practice, the degree of specificity of a system concept varies over a wide range; sometimes
the initial concept is so vague that it leads to misunderstandings, lapses, or inconsistencies,
which contribute to hazards. Application and evaluation of HA (Section 2.1) is most effective in
the concept phase of a system-development lifecycle. Avoidance of these contributors to
hazards (see Table 1 and Tasks T1 through T3 in Table 21) requires clear description and
tracking of the evolving system concept and its relationship with its environment, as discussed
in this section.

2.4.1 Hazards associated with the environment of the DI&C system
Hazards can be contributed through an ill-understood relationship between the conceived
system and its environment, some examples of which are given in Table 5, Table 6, and
Table 7. These tables also identify conditions that reduce the respective hazard spaces.

Hazards (including contributory hazards) might originate in the environment of the analyzed
DI&C system, might originate in the DI&C system, or might result from the interactions of the
system and the environment. See Appendix E.4 for hazard sources from the physical
environment. See Appendix E.5 for ways in which a DI&C system might affect its environment
adversely.

Section 2.4.1.1 includes examples of hazards related to interactions with the plant processes.

Section 2.4.1.2 includes examples of hazards related to interactions with instruments, controls,
and networks in the system’s environment.

43 It roughly corresponds to but is significantly broader than the HA mentioned in Table 1b in [10].
44 The concept and PHA are good candidates for discussion with the applicant before it submits the
license application.

RIL-1101 Page 26

Section 2.4.1.3 includes examples of hazards contributed through the human-interaction aspect
of the system’s environment.

Section 2.4.2 includes examples of hazards contributed through deficiencies in the architectural
concept. Conditions reducing the hazard space are applicable recursively to architecture inside
the intended safety system in every phase in the development lifecycle (from conception to
implementation), to every level in the system-architecture integration hierarchy, and to
transformations from one level to another.

2.4.1.1 Hazards related to interaction with plant processes

Often, hazards arise from an inconsistency between the perceived process state and the real
process state. Here, the term “process state” is used in the general sense; for example, the
state of the nuclear reaction process, the state of some supporting physical process in the NPP,
the state of control automation, the state of some instrument, or even the state of the
degradation process of some device. Hazards can also arise from unanalyzed conditions in the
joint behavior of the plant (including equipment and processes) and the safety system. Table 5
shows examples of contributory hazards and conditions that reduce the respective hazard
space.

Table 5: Examples of contributions to hazards through interactions with the plant
Contributory hazards Conditions that reduce the hazard space
ID
H-Proc
State- Description

ID
H-Proc
State- Description

1 The nature of change in some
monitored physical
phenomenon45 in the process
of interest in the environment
of the digital safety system is
not well understood or not
characterized correctly.
Also see H-SR-23.

1G1 The physical processes46 in the monitored
phenomenon are modeled and represented
correctly; for example:

1G1.1 • Nature of variation over time
1G1.2 • Dependencies on other phenomena
1G2 The perceived state matches reality with the

fidelity required in value and time.

1.1 The temporal aspect of
change in a continuously
varying phenomenon is not
well understood or not
characterized correctly.

1.1G1 Temporal behavior of a continuously varying
phenomenon is characterized correctly so that
timing requirements for monitoring it can be
derived without loss of fidelity. This includes
timing relationships across monitored
phenomena.

1.1G1.1 The physics of the phenomenon (e.g., dynamic
behavior, including disturbances) is understood
well and characterized mathematically.

1.2 The temporal aspect of
change in a sporadic
phenomenon is not well
understood or not
characterized correctly.

1.2G1 Requirements for reacting to sporadic events
(e.g., sudden change) include the minimum
inter-event arrival time, based on the physics of
the event-generating process.

1.2G2 Signal indicating event of interest is not filtered
out.

45 Examples: Pressure, temperature, flow, and neutron-flux density.
46 Examples: Energy conversion, equipment degradation, and component degradation.

RIL-1101 Page 27

Contributory hazards Conditions that reduce the hazard space
ID
H-Proc
State- Description

ID
H-Proc
State- Description
1.2G3 Signal indicating event of interest is not missed

because of inadequate sampling, as
determined through mathematical analysis.

1.2G4 Capturing event of interest does not disrupt
any other action on which a safety function
depends.

2 Unanalyzed joint behavior of
the safety system and the
plant equipment and
processes degrades a safety
function.

2G1 Safety system and its environment, including
the NPP equipment and processes, are
analyzed as a coupled system with sufficiently
deep models of the behaviors (e.g., processes,
instruments, controls, and networks) to
represent reality with fidelity47.

3 Allocation of safety functions
and properties from a system
at a higher level of integration
to a system at a lower level is
not correct, complete, or
consistent, or is ambiguous.

3G1 Relationships with losses of concern are
identified, and commensurate safety goals are
explicitly formulated, in NPP-level analysis.

3G2 Decomposition of safety goals into required
safety functions (design bases) is complete,
correct, consistent, and unambiguous.

3G3 Allocation of safety requirements to
safety-related systems48 is complete, correct,
consistent, and unambiguous. Also see
Table 9.

3G4 Allocation of safety properties, including
corresponding decomposition or flow-down or
derivation of constraints, is complete, correct,
and consistent. See Table 8 in Section 2.5.1.1.

3G5 The boundary of the system being analyzed is
well-defined with respect to its environment (in
CP 2.1.3.2.1 in [12]).

3G6 The interface to and interactions with the plant
are specified and constrained in such a
manner that the system is understandable
[H-S-2↑], verifiable49 [H-S-1.1], and free from
interference [H-SA-3]). Examples of elements
in the environment include interfaces to and
interactions with:
1. Sensors
2. Actuators
3. Services needed; for example:
3.1. Electricity
3.2. Air flow
3.3. Compressed air
3.4. Water
4. Human/machine interfaces
4.1. Roles, responsibilities, and functions
4.2. Procedures specifying 4.1

47 Traditional FMEA and FTA of I&C systems in the plant will not suffice, as noted elsewhere.
48 If there are multiple levels of assembly (integration), this criterion applies to each level-pair.
49 That is, satisfaction of the constraint or specification is verifiable by analyzing the system concept.

RIL-1101 Page 28

Contributory hazards Conditions that reduce the hazard space
ID
H-Proc
State- Description

ID
H-Proc
State- Description
3G7 Constraints on other elements in the

environment of the system are explicit.
3G8 Restrictions & constraints placed on the

system are explicit; example constraints might
be:
1. Compatibility with existing systems.
2. Compatibility with physical and natural

environment.
3. Protection against propagation of

non-safety system faults and failures.
4 Interactions of the system with

its environment, including
effects of assumptions, are not
well-understood
[H-ProcState-3↑].
See note.
(In item 3 of Appendix A.3 to
[20].)
[H-culture-12↓]

4G1 See: H-ProcState-3G7, H-culture-{12G2
and 12G3}, and Appendix J.

4G1.1 [H-culture-12G1↓]
The organizational processes (Section 2.2)
include explicit tasks or activities to validate
each assumption in time to avoid adverse
impact on the system safety properties and HA
activities.
Also see H-culture-{12G2 and 12G3}.

4G1.2 If an assumption is found to be invalid or there
is a change from the previous assumption:

1. A corresponding change-impact analysis is
performed.

2. The affected part of the HA is repeated.

3. Commensurate changes in constraints or
requirements are identified.

4. An analysis of the impact of those changes
is performed.

5. The change-impact analysis is an
independently evaluated configuration
item.

4G2 Hazards from the physical environment are
analyzed. See Appendix E.4.

4G3 Hazards from the DI&C system to its
environment are analyzed. See Appendix E.5.

Note for H-ProcState-{3-4}: The intent of reviewing for these factors is to check that the system on
which HA is to be performed and its context (environment) are correctly identified, the dependencies are
correctly understood, the primary hazards (external and internal) are identified, and the commensurate
constraints are identified.
Note for H-ProcState-3: When a large complex system, such as an NPP (including its
environment and processes for operation and maintenance) is decomposed into manageable
subsystems and components, the constraints necessary to prevent the losses at the top level
(e.g., NPP level) might become obscure. For example, subtle couplings across the decomposed
elements might arise. In an evolving configuration of the overall (e.g., NPP-level) system, the
boundary of the system being analyzed and assumptions (see Appendix J) about its
environment might not be well-defined, leading to appropriate considerations “falling through the
cracks.”

RIL-1101 Page 29

Figure 5 depicts a “progressive”50 migration from a normal operational-process state region
(shown in green) to an unsafe state region (shown in red). Actions to avoid the unsafe state
region (i.e., to effect safe recovery) need some time (shown as the brown region). To allow for
the needed time, the temporal aspect of change in the monitored phenomena must be
understood well and departure (shown in yellow) from normal operational state must be
monitored. Intervention must be completed within this (yellow) region.

2.4.1.2 Contributory hazards from NPP-wide I&C architecture
The scope of NPP-wide system architecture includes the safety system under evaluation and its
relationship with its environment; that is, all systems, elements, processes and conditions that
support or affect the performance of a safety function. “Relationship” includes interfaces,
interconnections, and interactions, whether these are direct, intended, explicit, static, “normal,”
indirect, implicit, unintended, dynamic, or “abnormal.” Any relationship that affects the
performance of a safety function is a dependency. HA of the NPP-wide I&C architecture should
examine it for hazards relevant to the safety-related system to be analyzed. Figure 6 provides a
simplified view.

50 Under the premise that degradation is not sudden or unpredictable and that its progression can be
monitored.

Unsafe region

Normal
operational

region

Boundary of
safe recovery

Intervention must be
completed in this
region

Figure 5: Regions of state space for hazard analysis.

RIL-1101 Page 30

Constraints on the NPP-wide I&C architecture are derived from the quality51 attributes or
properties of the safety-related system being analyzed. Quality attributes are discussed in
Section 2.5.1.1, including in Table 8, which also applies to the NPP-wide I&C architecture.

Note: Criteria for the evaluation of HA for the NPP-wide architecture are predicated on the
correct and complete performance of HA, as illustrated in Table 1, including considerations
of combinations of multiple contributory hazards as exemplified in Table 3 through Table 7.

Table 13, derived from considerations in Table 8, also applies to the NPP-wide I&C architecture.
in the context of hazards contributed through interference.

2.4.1.3 Contributory hazards from human/machine interactions
Hazards of the kind grouped in Table 1 through Table 5 could also affect human/automation
interactions.

The tables in this section supplement those with some examples of more specific hazards
contributed through human/automation interactions (Table 6) and through inadequacies in the
associated engineering (Table 7).

51 Other terms for these properties are “quality-of-service (QoS) properties” and “non-functional
requirements.”

NPP-wide I&C architecture

NPP-level HA

Losses to be prevented

Hazards leading to losses

Preventative constraints

Allocation of
safety functions

DI&C
Safety
Automation

I&C
Safety
HMI

Other
(non I&C)
equipment

Allocation of
other
functions

Other
systems

Figure 6: NPP-wide I&C architecture—allocation of functions in the concept phase.

RIL-1101 Page 31

Table 6: Examples of contributions to hazards through human/machine interactions
Contributory hazards Conditions that reduce the hazard space
ID
H-hmi- Description

ID
H-hmi- Description

1 Inconsistency between
human-perceived process
state and real process state.

1G1 Process state presented to the human accurately
represents the real physical state in value and time.

2 Inconsistency between
human-perceived state of an
instrument52 and real state of
the instrument.

2G1 Instrument (e.g., actuator) state presented to the
human accurately represents the real physical state
of the instrument in value and time.

3 Mode confusion. 3G1 Human is notified of the current mode and a mode
change in progress (the loop is closed with
feedback).

3G2 Human has a correct understanding of the
mode-change model (that is, the human is equipped
with correct mental model of the mode-switching
behavior of the automation).

3G3 Potential for mistaken interpretation of the
information presented by the human/machine
interface is eliminated.

3G4 Either inconsistent behavior of automation is
avoided or automation detects its inconsistency and
notifies human.

3G5 Unintended53 side effects are avoided.
3.1 Confusion about line of

authority (who or what entity
is in control at the moment).

3.1G1 Multiple concurrently active paths of control
authority (logical control flow) are avoided.

3.1G2 Change of mode by automation without human
confirmation is avoided.

3.1G3 Correct division of tasks is ensured through analysis
of human tasks, including human/automation
interactions.

4 Inappropriate division and
allocation of tasks between
human and automation.

4G1 H-OTproc-3G1.

5 Normally useful cognitive
processes are defeated or
fooled by a particular
combination of conditions [6]
[9] [18].

5G1 See H-hmi-6G1.

6 Human mental model of how
the system works is not
consistent with the reality.

6G1 “How the system works” (the information needed by
operating personnel about its behavior and needed
human/automation interaction) is described clearly,
including behavior and human/automation
interaction under all combinations of off-normal
conditions (e.g., in the presence of a fault).

52 For example, a sensor or actuator.
53 Any intended effect is explicit (e.g., as a part of the specification) and is analyzed for its effect on a
safety function.

RIL-1101 Page 32

Table 7: Examples of contributions to hazards through human/machine interaction engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-hmiP- Description

ID
H-hmiP- Description

1 Loss of information across disciplines
(e.g., automation engineering,
human-factors engineering, and
control-room design).
[H-culture-9↑ and H-SR-3↑]

1G1 System is engineered holistically,
including crosscutting analysis.
(Adapted from footnote 82 in
Appendix A.3 to [20].)

2 Confusing human/machine interface
design.

2G2 H-hmi-3G3.

3 Cognitive overload. 3G3 H-OTproc-3G1.

2.4.2 Contributory hazards in conceptual architecture
The term “conceptual architecture” refers to the architecture of the system concept as it evolves
in relation to its environment (also see Section 2.4.1.2).

Here, the focus shifts from the interactions of the conceived system with the environment to its
internal architecture, as driven by the requirements allocated to it; that is, the interrelationships
of the various requirements and constraints to be satisfied by the conceived system. The
information in Table 8 and Table 13 is applicable to the conceptual architecture, especially with
respect to the following concerns:

1. Freedom from interference across redundant divisions [item 2↑ of H-SA-3G3 in Table 13].

2. Freedom from interference between a monitoring element and its monitored element
[item 4↑ of H-SA-3G3 in Table 13].

3. Compromise of redundancy through a dependency (e.g., input data or resource sharing).
Also see items H-0-8 and H-0-9 in Table 1.

4. Compromise of redundancy in the concept of voting54 logic.

The conditions (to reduce the respective hazard spaces) provided in Table 8 and Table 13 apply
recursively to the most finely grained level of the system architecture and recursively to the most
finely grained level of the software architecture. These conditions also apply to the mappings
(e.g., through composition and decomposition) from one level to another in the architecture
hierarchy55 and through all stages of derivation of requirements & constraints and the
subsequent development lifecycle stages (e.g., detailed design and implementation).

2.4.3 Contributory hazards from conceptualization processes
Some hazards contributed through weaknesses in the cultural and general technical processes
of the organization (Table 3 and Table 4), which were introduced in Section 2.2, strongly apply
to the concept phase of the system-development lifecycle.

Requirements engineering (Section 2.5) and architectural engineering (Section 2.6) apply to the
concept phase also—see Table 12, Table 13, and Table 14.

54 Example: In a quad-redundant system for a space system, four computers were connected by a
multiplexer/demultiplexer module. A diode in the interconnections failed in such an unanticipated way that
the condition was not sensed in the same way by the four computers. (In footnote 84 in Appendix A.3
to [20].)
55 The mapping could contribute a hazard because some abstractions can mask problems.

RIL-1101 Page 33

Planning the rest of the development lifecycle goes hand in hand with the conceptualization, as
stated in tasks T1 through T3 in Table 21 in Appendix C.3.

2.5 Evaluation of hazard analysis—Requirements
Experiences of many critical application domains have shown that identifying valid requirements
for a critical digital safety system is one of the weakest links in the overall engineering process.
Inadequacy in requirements is one of the most common causes of a system failing to meet
expectations. Failures traceable to shortcomings in requirements cannot be caught through
such verification activities as simulation and testing alone. Formal methods do not help in
understanding intent or eliciting missing requirements when the intent is not clear [20]. For a
safety system, requirements and constraints emerge from hazard analysis and are validated
through independent hazard analysis. Although initial requirements for a digital safety system
come from a higher level of integration (e.g., from a NPP-level safety analysis), additional
requirements and constraints are discovered at every phase of the development lifecycle.

2.5.1 System Requirements
In the general context of systems engineering, the specification of a primary function, valued
and required by its user, is called a functional requirement. In the context of digital safety
systems, example groups of functional requirements include (but are not limited to) monitoring
departure from a safe state, detecting threshold for intervention, and intervention for mitigating
the consequence of departure from safe state. Key prerequisite activities for identifying safety
requirements were discussed in Sections 2.1 (overall hazard analysis and understanding
dependencies leading to loss events) and 2.4.1 (understanding hazards in relation to the
environment of the safety system, including hazards contributed from inadequate definition of
the boundary of the safety system, from invalid assumptions (see Appendix J), and from
interactions with other systems and humans). The analysis reviewed in those sections
contributes to an early stage of requirements engineering. Given the requirements resulting
from those analytical activities, Section 2.5.1.1 introduces the concept of associated quality
requirements. Section 2.5.1.1 also introduces the concept of derived quality characteristics or
requirements in an organizing framework, known as a “quality model” [22]. Section 2.5.1.2
identifies some common weaknesses in formulating verifiable requirements and Section 2.5.1.3
identifies some common weaknesses in the associated requirements-engineering processes.

2.5.1.1 Quality requirements
Figure 7 shows two categories of requirements – functional and quality requirements [22]. In
general, a functional requirement may be associated with one or more quality requirement or
constraint; for example, in the context of this RIL, SAFETY and SECURITY are top-level quality
requirements, which depend upon other constraints or required characteristics, as shown in
Figure 8 (the connectors represent dependency relationships).

RIL-1101 Page 34

In a regulated environment, the SAFETY property should be assurable independently. Then, as
shown in Figure 8, “Assurability” is a required attribute56. Figure 8 also shows other quality
attributes upon which “Assurability” depends. The corresponding quality requirements may also
be viewed as constraints to be satisfied by the digital safety system; that is, constraints on the
solution space (also known as design space), which eliminate from further consideration those
system concepts that do not satisfy these constraints. In other words, these constraints reduce
the hazard space in the design space. Table 8 shows the logical derivation of these constraints,
corresponding to the relationships shown in Figure 8; the reasoning is explained below:

1. To be able to assure that a system is safe, one must be able to verify that it meets all of its
safety requirements. [H-S-1]

2. For a system to be verifiable, it must not be possible for one element of the system to
interfere with another. [H-SA-3]

3. If the conceived system is too complex, adequate verification is infeasible. [H-S-1.1]

4. If it is too complex, one cannot understand it. [H-OTproc-3G1]

5. If one cannot even understand it, how can one assure that it is safe? [H-S-2]

6. Verifiability is a required system property, flowing down from the system to its elements
(constituents) and progressing to the most finely grained element; it implies corresponding
verifiable specifications. Verification also includes analysis at various phases in the
development lifecycle, well before57 an artifact is available for physical testing. Examples of
conditions for verifiability include:
6.1. Ability to create a test (or verification) case to verify the requirement.

6.1.1. Observability

56 It distinguishes regulated safety systems from non-critical systems such as those for entertainment.
57 This is known as “static analysis” when it is performed on a computer program (code). However,
analysis in the same “static” sense can also be performed on work products of earlier phases (e.g., on
models). [H-S-1.1.1]

Quality requirements Quality requirements

Figure 7: Quality requirements should be explicit.

Requirements & Constraints

Quality requirements

Safety Security

 Functional requirements

Other

RIL-1101 Page 35

6.2. Ability to constrain the environment of the object of verification.
7. For “analyzability,” the system must have predictable and deterministic58 behavior. [H-S-1.2]

Table 8: Examples of contributions to hazards through quality attributes
Contributory hazards Conditions that reduce the hazard space
ID
H-S- Description

ID
H-S- Description

1 The system is not sufficiently verifiable
and understandable, but this deficiency
is discovered too late. Appropriate
considerations and criteria are not
formulated at the beginning of the
development lifecycle; therefore,
corresponding architectural constraints
are not formalized and checked. When
work products are available for testing, it
is discovered that adequate testing is
not feasible (e.g., the duration, effort,
and cost are beyond the project’s
limitations).

1G1 Verifiability is a required system property,
flowing down from the system to its
constituents and progressing to the most
finely grained element.
(Adapted from CP 2.2.3.11 in [12].)
[H-S-1.1G1↓]

1G1.1 Verifiability of a work product is checked at
every phase of the development lifecycle,
at every level of integration, before
proceeding further in the development.

1.1 System is not verifiable (e.g., it is not
analyzable or very difficult to analyze).

1.1G1 Avoidance of unnecessary59 complexity.
1.1G1.1 The behavior is unambiguously specified

for every combination of inputs (including
unexpected inputs) at every level of
integration in the system (in item 4 in
Section A.4 of Appendix A to [20]).

1.1G1.2 The flowdown ensures that:
1. Allocated behaviors satisfy the

behavior specified at the next higher
level of integration.

2. Unspecified behavior does not occur.

58 Yields deterministic results.
59 Defined as complexity that is not essential to support a safety function.

Safety

Assurability

Verifiability

Analyzability
Freedom from interference

Deterministic behavior

Predictability

Comprehensibility

Complexity

Simplicity

Figure 8: Quality characteristics to support safety.

RIL-1101 Page 36

Contributory hazards Conditions that reduce the hazard space
ID
H-S- Description

ID
H-S- Description
1.1G1.3 The behavior of the system is composed of

the behaviors of its elements in such a way
that when all of the elements are verified
individually, their compositions may also be
considered verified60. This property is
satisfied at each level of integration,
flowing down to the most finely grained
element in the system.

1.1G1.4 Development follows a refinement process.
1.1.1 Unanalyzed or unanalyzable conditions

exist. For example, not all system
states, including unwanted ones such as
fault states, are known and explicit. To
that extent, verification and validation
(V&V) of the system is infeasible.
[H-S-1.1↑]

1.1.1G1 Static analyzability: System is statically
analyzable.
1. All states, including fault conditions, are

known.
2. All fault states that lead to failure modes

are known (in the first item of
CP 2.2.3.14 in [12]).

3. The safe-state space of the system is
known (in the second item of
CP 2.2.3.14 in [12]).

1.1.2 There is inadequate evidence of
verifiability. [H-S-1.1↑]

1.1.2G1 Verification plan shows the coverage
needed for safety assurance.

1.2 System behavior is not deterministic61.
[H-S-1.1.1↑]

1.2G1 System has a defined initial state.
1.2G2 System is always in a known configuration.
1.2G3 System is in a known state at all times

(e.g., through positive62 monitoring and
indication):
1. Initiation of function
2. Completion of function (in the last item of

CP 2.1.3.4 in [12])
3. An intermediate state, where one is

needed to maintain a safe state in case
of a malfunction.

1.3 System behavior is not predictable.
[H-S-1.1.1↑]

1.3G1 Each transition from a current state
(including initial state) to some next state is
specified and known, including transitions
corresponding to unexpected combinations
of inputs and transition conditions.

1.3G2 A hazardous condition can be detected in
time to keep the system in a safe state. (in
the third item of CP 2.2.3.14 in [12]).

60 No unspecified behavior emerges.
61 Does not yield deterministic results.
62 If indirect indication or inference is used, HA confirms satisfaction of H-ProcState-1G1.2.

RIL-1101 Page 37

Contributory hazards Conditions that reduce the hazard space
ID
H-S- Description

ID
H-S- Description

2 Comprehensibility: System behavior is
not interpreted correctly and consistently
by its community of users
(e.g., reviewers, architects, designers,
and implementers); that is, the people
and the tools they use.
[H-S-1↑]

2G1 Behavior is completely and explicitly
specified. (See note) Also see
H-culture-{12G2 and 12G3}.

2G2 The system is simple enough (not too
complex) to be understood in the same
meaning by its community of users.

2G3 Behavior is understood or interpreted
completely, correctly, consistently, and
unambiguously by different users
interacting with the system. Also see
H-culture-{12G2 and 12G3}.

2G4 The allocation of requirements to some
function and the allocation of that function
to some element of the system are
bidirectionally63 traceable. (in item 2 of
Section A.4 of Appendix A to [20]).

2G5 The behavior specification avoids mode
confusion, especially when functionality is
nested (in item 3 of Section A.4 of
Appendix A to [20]).

2G6 The architecture is specified in a manner
(e.g., through its language and structure)
that is unambiguously interpretable by the
community of its users (e.g., reviewers,
architects, designers, implementers), that
is, the people and the tools they use (in
item 9 of Section A.4 of Appendix A
to [20]).

Note for H-S-2G1: Sometimes, experts can understand implicit meaning. However, explicit information is
needed for machine interpretation (i.e., through tools).

Considering that the state of practice is especially weak in the derivation of verifiable constraints
from quality requirements, a careful review is needed. The architecture should satisfy these
constraints, starting from the system concept phase and continuing at every successive phase
of development and decomposition, including all phases of the software development lifecycle.
Commensurate architectural constraints are identified in Section 2.6.

2.5.1.2 Contributory hazards through inadequate system requirements
Activities leading to identification of functional requirements for safety were introduced in
Sections 2.1 (overall hazard analysis, including understanding of dependencies leading to a loss
event or degradation of a safety function) and 2.4.1 (understanding hazards in relation to the
environment of the safety system, including hazards contributed from inadequate definition of
the boundary of the safety system, from invalid assumptions (see Appendix J), and from
interactions with other systems and people). Table 9 identifies further contributory hazards
resulting from weaknesses in identifying and formulating requirements. The content of Table 9 is

63 This does not imply that one-to-one relationships are necessary.

RIL-1101 Page 38

adapted mostly from Section A.3 of Appendix A to [20]; other sources are cited within the
respective item in Table 9. For hazards contributed through weaknesses in interfaces and
interactions across elements of the system, see Section 2.6.1.

Table 9: Examples of contributions to hazards through inadequate system requirements
Contributory hazards Conditions that reduce the hazard space
ID
H-SR- Description

ID
H-SR- Description

1 Mistakes occur because
the environment is
misunderstood.

1G1 [H-SRE-{1G1, 1G2, and 1G3}↓].
See H-culture-{4G1, 4G2, 4G3 and 6G3};
Subsections C.3.2 and C.3.3 of Appendix C; and
Appendix F, especially Section F.1.

2 Input constraints are
misunderstood or
improperly captured.
[H-SR-1↑]

2G1 [H-SRE-{1G1, 1G2, and 1G3}↓].
See H-culture-{4G1, 4G2, 4G3 and 6G3};
Subsections C.3.2 and C.3.3 of Appendix C; and
Appendix F, especially Section F.1.

2G2 Criteria for input validation are correctly established.
See Sections F.2 and F.4 of Appendix F.

3 Incomplete requirements. 3G1 See Table 1.
3G2 H-ProcState-3G5.
3G3 HA includes interactions with the environment of the

system; see Section 2.4.1.
3G4 Interrelationships and interactions with the environment

are analyzed in all configurations and modes (including
degraded ones) and through all changes from one
mode to another. [H-SR-3G3↑]

3G5 In HA at the system concept phase (Section 2.4), an
architectural model or representation of the system
(functional or behavioral) concept includes a (functional
or behavioral) model or representation of the
environment, especially of the physical processes
(Appendix H in [23]).
[H-SR-3G3↑ and H-SAE-{1G1, 2G1, 3G1, and 4G1}↓]

3G6 Process behavior models64 (H-SR-3G5) include
identification of safe-state regions and the trajectory65 of
safely recoverable process states. See Figure 5
and [23].

3G7 Process behavior models (H-SR-3G5) include time
dependencies, relationships and constraints. [14] . Also
see Table 5 and Appendix I.

3G8 [H-SRE-{1G1, 1G2, and 1G3}↓].

64 The scope is limited to I&C relevance.
65 The state space within which recovery is provable.

RIL-1101 Page 39

Contributory hazards Conditions that reduce the hazard space
ID
H-SR- Description

ID
H-SR- Description

4 Inadequate protection or
defense against latent
faults.
[H-SR-3↑].
Note tension with
[H-SR-20].

4G1 Monitoring: Feasible trajectories66 of appropriate state
variables67 or parameters and expected values are
known and monitored.
(Generalized from CPs 2.1.3.2.3 and 2.1.3.2.4 in [12].)

4G2 Detection: Appropriate parameters of the system or
element are monitored to detect departure from safe
state (e.g., by applying discriminating68 logic on the
monitored parameters) in conjunction with predictive
behavior models, but considering [H-SR-{19 and 20}]

4G3 Intervention: On detection of departure from safe state,
intervention is performed to keep the plant in safe state.
(Adapted from CP 2.2.3.7 in [12].)

4G4 Containment: The system or element is able to contain,
localize, and isolate the source of the fault (e.g., a
hardware or software component).

4G5 Notification: Notification is timely, but avoids overload69.
4G6 [H-SRE-{1G1, 1G2, and 1G3}↓]

5 Inadequate identification
of sources of uncertainty,
their effects, and their
mitigation. [H-SR-3↑]

5G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

6 Deficiency in
requirements for fault
containment. [H-SR-3↑]

6G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

7 Inadequate or improper
generalization to capture
classes of issues.

7G1 [H-SRE-{1G1, 1G2, and 1G3}↓]
See H-culture-{4G1, 4G2, 4G3, 4G4, and 6G3} and
Appendix F, especially Section F.1.

8 Inconsistent
requirements.

8G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

9 Inadequate protection or
defense against invalid
input.
[H-SR-4↑]

9G1 See H-SR-2G2
 The validity of the value of each input is monitored (in

CP 2.1.3.2.4 in [12]).
9G2 Intervention on detecting invalid input is specified in

order to keep the system in a safe state.
10 Instrumentation errors

are uncorrected or
inadequately
compensated for.

10G1 Required calibrations and corrections are known and
applied (generalized from CP 2.1.3.2.5 in [12]).
[H-SR-9G1↑]

11 Implicit assumptions
about the environment.
[H-culture-12↑]

11G1 Each assumption about the environment is made
explicit (e.g., documented; in item 3 in Appendix A.3
to [20]). See Appendix J.
[H-culture-{12G1-12G3}↑]

12 Invalid assumption about
the environment.

12G1 See Appendix J, H-culture-12G3, Appendix C.3.3, and
Appendix F.2.

66 For example, values over time and rates of change.
67 Include inputs and outputs.
68 For example, detect infeasible or unexpected values.
69 A single event may cause many deviations crossing monitoring thersholds. However, if their
communication is not managed, it may overload system resources or the operator.

RIL-1101 Page 40

Contributory hazards Conditions that reduce the hazard space
ID
H-SR- Description

ID
H-SR- Description
12G2 Each assumption about the environment is validated

(e.g., through treatment as a “constraint or condition to
be validated”).

13 Unclear expression of the
consequences of an
assumption.
[Table 1][H-SR-12↑]

13G1 The record of each assumption [H-SR-12G1] includes
the consequences if the assumption turns out to be
false. (In item 4 in Appendix A.3 to [20].) Also see
Appendix J.

13G2 Requirements include measures to mitigate the
consequences of assumptions that fail to hold. (In
item 4 in Appendix A.3 to [20].)

13G3 Each assumption (e.g., constraint or condition to be
validated) is tracked as a configuration item.

13G4 Assumptions about the downstream design are made
explicit (e.g., through explicit derived requirements or
constraints on the architecture, design, and
implementation and on the associated methods and
tools). (In item 3.1 in Appendix A.3 to [20]) See:
Appendix J and H-culture-{12G2 and 12G3}. Examples:
1. Requirements from the application software on

system platform services (hardware (HW) and
software (SW), including HW and SW resources to
support the workload).

2. Timing constraints to be satisfied.
3. Compatibility across maintenance updates.

13G4.1 The safety plan and supporting plans include activities
and tasks specifying how and when these assumptions
will be validated.

14 Unmitigated
consequence of invalid
assumption.

14G1 The record of each assumption [H-SR-12G1] includes
how and when it will be validated. (In item 3 in
Appendix A.3 to [20].)

15 Incorrect order of
execution or timing
behavior.
[H-ProcState-1.1]
[H-ProcState-1.2]

15G1 An explicit, verifiable (as determined through
mathematical analysis) specification of the order of
execution and timing interrelationships; the specification
includes considerations for multiple concurrent physical
processes, inter-process synchronization, and shared
resources (in CPs 2.1.3.2.2 and 2.2.3.5 in [12]). See
Appendix I.

16 Interrelationships and
interdependence across
requirements are not
clearly understood or
recognized [H-0-6
through H-0-8], resulting
in unanalyzed conditions.

16G1 Applicable types of dependencies across requirements
are identified (see examples herein), modeled, and
tracked. For example, if A and B are two requirements,
their relationship types (see note) may be:
• A requires B
• B supports A
• B hinders A
• B is a selection for A (an exclusive one among

many choices)
• B is a specialization of A

16G2 Hidden dependencies between functions
(e.g., “unwanted feature interactions”) do not exist.

RIL-1101 Page 41

Contributory hazards Conditions that reduce the hazard space
ID
H-SR- Description

ID
H-SR- Description

17 Interference from
unintended interactions
or side effects. [H-S-1↑].
See Table 2.

17G1 Interactions are limited provably70 to those required for
the safety functions.

17G2 Verifiable constraints are specified to prevent
unspecified behavior or side effects.

18 Effects of sudden
hardware71 failure,
especially failure of
semiconductors.

18G1 Requirements include failure or fault detection and
containment measures, including offline ability to locate
and isolate the source of the fault (e.g., a hardware or
software component). [H-SRE-7G1↓]

19 Allocated set of
requirements leads to
conditions that are
unanalyzable or difficult
to analyze.

19G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

20 Adding backups (or fault
protection) can introduce
new hidden
dependencies and impair
analyzability. [H-SR-19↑]

20G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

21 Layers of protection
against software faults
might impair analyzability.
[H-SR-19↑]

21G1 [H-SRE-{1G1, 1G2, and 1G3}↓]

22 Inability to correctly
integrate elements of a
system
(e.g., subsystems,
hardware components, or
software components).
[H-SR-{1, 2, 3, 8, 12, 13,
15, 16, and 19}↓]
[H-SwR-2↓]
[H-SRE-7↓]
[H-SwRE-1↓]
[H-HwP-1↓]

22G1 [H-SRE-{1G1, 1G2, and 1G3}↓]
[Table 14↓]

22G2 There are no deficiencies in the specifications.
22G3 There are no deficiencies in the elements to be

integrated.
22G4 The system is modularized properly so that its

correctness can be concluded from the correctness of
the architecture and the correctness of the elements.
[H-S-1.1G1.4↑]

23 Anomaly in the state of
the process72 is not
recognized or identified
or correctly understood or
correctly specified.
[H-SR-3↑]
[H-SR-4↑]

23G1 See H-SR-3G6.
The trajectory of safely recoverable process-state
variables (i.e., state space within which recovery is
provable) is specified correctly.

In other words, when departure from this state space or
region is recognized, intervention can prevent departure
from the safe state. See Figure 5.

Also see Appendix F.
Note for H-SR-16G1: Relationships may be one-to-one, one-to-many, many-to-one, and many-to-many.

70 It is possible to show that unspecified interactions cannot occur.
71 Also see Table 17.
72 The process that the safety system is observing or monitoring for safety-related intervention.

RIL-1101 Page 42

2.5.1.3 Contributory hazards from system-requirements engineering
The requirements-engineering phase of the lifecycle is most sensitive to the quality of
processes, including the resources applied. Requirements elicitation and analysis aspects are
most sensitive to the competence [H-SRE-1] applied.

Table 10 identifies hazards contributed through weaknesses in the process of engineering
requirements for the system.

Table 10: Examples of contributions to hazards through inadequate system-requirements
engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-SRE- Description

ID
H-SRE- Description

1 Inadequate
competence.
[H-culture-6↑]

1G1 The team engaged in these activities is a group with high
competence in multiple disciplines, capable of creatively
eliciting and synthesizing information from diverse sources,
including implicit, experiential knowledge about the
environment. The combined competence of the team
matches the expertise needed in each phase of the
engineering lifecycles. (See note).
See H-culture-{4G2, 4G3} and Appendix F.

1G2 A different and independent diverse team reviews the
requirements and their validation.

1G3 The review team has expertise in discovering the types of
mistakes or shortcomings identified in Table 9 and Table 10
[H-SRE-{2 through 6}].
See H-culture-6G3 and item 5 of Appendix F.1.

2 Ambiguity in the
natural-language
textual description.
[H-SAE-2↓]

2G1 A subset of the natural language is used in order to
unambiguously describe requirements to the community of
users73 of the system and the requirements. This subset
features, for example:
1. A closed set of language elements.
2. Unambiguous semantics for each language element.
3. Unambiguous compositions of language elements and

compositions of compositions.
Also see H-culture-{12G2 and 12G3}.
[H-SAE-1G1↓ and H-SAE-1G2↓]

2G1.1 Formal properties are abstracted for later use in verification
of the next phase of the work product. [24][25]

73 Users include people employed in creation, modification, interpretation, transformation. maintenance,
V&V, and regulation (adapted from the last sentence of CP 2.3.3.1.1 in [12]) and the tools they use (i.e.,
the language should be unambigious to the tools for the functions allocated to them).

RIL-1101 Page 43

Contributory hazards Conditions that reduce the hazard space
ID
H-SRE- Description

ID
H-SRE- Description
2G2 The language subset (H-SRE-2G1) supports distinct

identification and description of the following:
1. Assumptions about the environment [23]; Appendix J.
2. Input from the environment such as a command (that is,

some signal requiring a state-changing effect plus
required behavior), query, process state, or other data.

3. Output (for example, some signal having state-changing
effect, or state notification, or exception notification).

4. Functions assigned to a human.
5. Procedure for the execution of each function assigned to

a human (required behavior).
6. Other elements of the system being analyzed.
7. Functions assigned to each element; required behavior.
8. Interactions required across elements.
9. Constraints on the behavior and interactions of each

element; e.g., timing constraints ([14] and Appendix I)
and quality-of-service (QoS) constraints.

10. Criteria to monitor and detect violation of a
constraint [21].

3 Incorrect
formalization from
intent or
natural-language
text

3G1 [H-SRE-2G1↓ and H-SRE-2G2↓] [H-SAE-1G1↓ and
H-SAE-1G2↓]

3G2 Persons performing the task (see H-SRE-2G1.1) know the
vocabulary of the application domain and know how to
translate it into formal properties.

3G3 1. Multiple independent persons/teams perform the task.
2. The discrepancies across their results are analyzed.
3. Another independent panel is engaged in resolving the

discrepancies.
4 Input constraints

are ambiguous.
4G1 Valid value type and range of each input are explicitly

identified (in CP 2.1.3.2.4 in [12]). Also see Table 1 and
H-culture-{12G2 and 12G3}.

5 Loss of information
in transfer and
traceability of
HA results to
requirements.

5G1 Activities of HA and Requirements Engineering are formally
integrated (also see Table 1).

6 An atomic
requirement is not
traceable
individually.

6G1 Each atomic requirement is traceable (in CP 2.1.3.1 in [12]
and in item 2 in Section A.4 of Appendix A to [20]).
[H-S-2G4↓]

6G2 Each requirement is a configuration-controlled item.74

74 Other relevant references: IEEE 828, “IEEE Standard for Configuration Management in Systems and
Software Engineering,” and IEEE 1042, “IEEE Guide to Software Configuration Management.”

RIL-1101 Page 44

Contributory hazards Conditions that reduce the hazard space
ID
H-SRE- Description

ID
H-SRE- Description

7 Loss of
information75
across disciplines,
processes, and
organizational units
(e.g., system
engineering,
software
engineering,
hardware
engineering, safety,
and quality).
[H-culture-9↑]
[H-SR-3↑]
[H-SwRE-1↓]

7G1 Systems are engineered holistically, including crosscutting
analysis. (Adapted from footnote 82 in Section A.3 of
Appendix A to [20].)
See H-culture-9G1, H-culture-9G2, and Section F.1 of
Appendix F.

7G1.1 The interaction across a system or an element and its
environment is identified explicitly.
Example: Models at every level of integration are compatible
with one another and information can be integrated and
analyzed across the various models.
See H-culture-{12G1, 12G2, and 12G3}.

Note for H-SRE-1G1: The types of expertise that the team will require might differ from phase to phase.

2.5.2 Software Requirements
Contributions to hazards through inadequacies in requirements at the system level (and
corresponding conditions to reduce that hazard space) also apply to requirements for software.
Even though correct, complete, and consistent unambiguous requirements for software are
supposed to flow down from the system engineering lifecycle, typically (in practice) V&V for
these properties occurs from the software engineering perspective76 as a part of the software
engineering lifecycle.

Some of the requirements from the system engineering lifecycle may be allocated directly (as is)
to software. For other requirements from the system engineering lifecycle (e.g., quality
requirements), additional requirements and constraints for software may be derived as part of
the software engineering lifecycle. Also see Section 2.6 for constraints on software architecture.
Contributory hazards and constraints identified in Section 2.6.1 for the system architecture also
apply to software. Derived constraints on software design and implementation are included in
Sections 2.8 and 2.9.

75 Current practice divides systems engineers, software engineers, and hardware engineers; often failures
occur due to gaps between these specialties. (From footnote 82 in Section A.3 of Appendix A to [20].)
76 For example, the software engineer checks the correctness of understanding and elicits additional
information in order to make the requirements explicit and unambiguous.

RIL-1101 Page 45

2.5.2.1 Contributory hazards in software requirements
The contributory hazards identified in Table 9 also apply to software requirements. Table 11
provides examples of additional hazards contributed through inadequacies in software
requirements.

Table 11: Examples of contributions to hazards through inadequate software requirements
Contributory hazards Conditions that reduce the hazard space
ID
H-SwR- Description

ID
H-SwR- Description

1 Inadequate flowdown of properties
(Table 8) and other constraints
from the system engineering
lifecycle (Table 9).
[H-SwR-2↓]

1G1 Corresponding constraints (Table 8 and
Table 9) are derived and applied to
software.

2 Inadequate flowdown of
requirements and constraints to
support integration of elements into
a correctly working system.

2G1 Corresponding constraints (Table 8 and
Table 9) are derived and applied to
software.

3 Inadequate flowdown of
requirements and constraints from
NPP level to the safety system and
then to its elements, including
software.

3G1 Where requirements and constraints are
decomposed or derived from upstream
(source) requirements, their composition
satisfies the source requirements and does
not introduce unspecified behavior.

4 Software produces an output of
infeasible value.

4G1 Appropriate conditions infeasible in the real
world are identified and used to establish
criteria to monitor77 for anomalous behavior
of software (adapted from CP 2.3.3.1.5
in [12]), but do not introduce the adverse
conditions identified in H-SR-{19 and 20}.

2.5.2.2 Contributory hazards from software-requirements engineering
The contributions to hazards identified in Table 10 (and conditions to reduce the associated
hazard space) also apply to software-requirements engineering. Table 12 provides examples of
additional contribution to hazards through inadequacies in engineering of software
requirements.

Table 12: Examples of contributions to hazards through inadequate software-requirements
engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-SwRE- Description

ID
H-SwRE- Description

1 Loss of information across disciplines,
processes, and organizational units
(e.g., system engineering, software
engineering, hardware engineering,
safety, and quality) caused by the
division of organizations, people, and
work along disciplinary lines.
[H-culture-9↑]

1G H-SRE-{7G1 and 7G1.1}↑.
Also see H-culture-{9G1, 9G2, 12G2,
and 12G3} and Appendix F.

77 It is a diversely redundant defense against deficiency in requirements to prevent the anomaly.

RIL-1101 Page 46

Contributory hazards Conditions that reduce the hazard space
ID
H-SwRE- Description

ID
H-SwRE- Description

2 Loss of information across disciplines
caused by the use of incompatible
paradigms, methods, and tools across
disciplines.
[Example contributor: H-HwP-5↓]

2G Methods and languages to describe
or specify requirements allocated to
software support unambiguous
mapping and integration across
dissimilar elements (e.g., interactions
across hardware, software, and
human elements).
[H-SAE-{2G1 and 3G1}↑]
[H-HwP-5G1↓]
See Appendix F.4.

2.6 Evaluation of hazard analysis—Architecture
System failures traceable to architecture rank high in incidence in various safety-critical,
mission-critical, high-quality digital systems across a diverse range of application domains. For
example, unwanted and unnecessary interactions, hidden couplings, feedback paths, and side
effects have led to unexpected failures; verification based on traditional testing or simulation did
not detect such flaws [20].

2.6.1 Contributory hazards in system architecture
While the overall scope of system architecture includes the safety system under evaluation and
its relationship with its environment, this section focuses on system-internal elements
(e.g., hardware and software) and their interrelationships (i.e., interfaces, interconnections, and
interactions), whether these are direct or indirect, intended or unintended, explicit or implicit,
static or dynamic, or “normal” or “abnormal.”

The scope of system-architecture activities includes the allocation of requirements and
constraints to elements identified in the system architecture.

Note: Architecture-specific evaluation of HA is predicated on the correct and complete
performance of the overall HA, as illustrated in Table 1, including considerations of
combinations of multiple contributory hazards as exemplified in Table 3 through Table 7.

Table 8 and Table 13 include examples of contributors to hazards through system architecture
and corresponding conditions that reduce the respective hazard spaces. These considerations
are applicable to architecture-related contributory hazards in every phase in the development
lifecycle (from conception to implementation), to every level in the integration hierarchy, and to
transformations from one level to another. Thus, the information in these tables should be
applied to the context of the level of integration being analyzed.

Table 13: Examples of contributions to hazards through interference
Contributory hazards Conditions that reduce the hazard space
ID
H-SA- Description

ID
H-SA- Description

3 A system, device, or other
element (external or
internal to a safety system)
might affect a safety

3G1 [H-SR-17G1↑]

RIL-1101 Page 47

Contributory hazards Conditions that reduce the hazard space
ID
H-SA- Description

ID
H-SA- Description

function adversely through
unintended interactions
caused by some
combination of
deficiencies, disorders,
malfunctions, or
oversights. [H-SR-17↑]

3G2 Interactions and interconnections that preclude
complete78 V&V are avoided, eliminated, or
prevented. (CP 2.2.3.11 in [12])

3G3 Freedom from interference is assured provably79
across:
1. Lines of defense [26].
2. Redundant divisions of system (CP 2.2.3.6 in [12]).
3. Degrees of safety qualification80 (CP 2.2.3.3

in [12]).
4. Monitoring & monitored elements of the system.

3G4 Analysis of the system demonstrates that unintended
behavior is not possible.81
1. Interaction across different sources of uncertainty is

avoided.
2. The architecture precludes unwanted interactions

and unwanted or unknown hidden couplings or
dependencies (in item 6 in Section A.4 of
Appendix A to [20]).

3. Specified information exchanges or
communications occur in safe ways (in item 6 in
Section A.4 of Appendix A to [20]).

3G5 Only well-behaved interactions are allowed
[H-S-1.2G{1, 2, and 3} and H-S-1.3G{1 and 2}↑]

3G6 Constraints are identified for such contributing
hazards from the environment as electromagnetic
interference; see examples in Section E.4. of
Appendix E.

3G7 The impact of dependency-affecting change is
analyzed to demonstrate no adverse effect.

4 [H-SA-3G4↑]: A function,
whose execution is
required at a particular
time, cannot be performed
as required because of
interference through
sharing of some resource
it needs.

4G1 Analysis of the execution-behavior of the system
proves that such interference will not occur. For
example, worst-case execution time is guaranteed.

5 Timing constraints are not
correctly specified and not
correctly allocated.

5G1 Timing requirements for monitoring a continuously
varying phenomenon are derived, specified, and
allocated correctly to the services and elements on
which their satisfaction depends. Example:
A sampling interval that characterizes the monitored
variable with fidelity.

78 “Completeness” includes confirmation that all specified requirements have been satisfied and
confirmation that the requirements are correct, complete, consistent, and unambiguous.
79 By, for example, showing that there is no pathway by which such interference could occur.
80 In other application domains, the corresponding concept is known as “mixed criticality.”
81 By, for example, showing that there is no pathway by which such unintended behavior could occur.

RIL-1101 Page 48

Contributory hazards Conditions that reduce the hazard space
ID
H-SA- Description

ID
H-SA- Description
5G1.1 The proper required sampling interval is determined

through mathematical analysis.
5G1.2 Discretization and digitization do not affect the

required fidelity determined through mathematical
analysis.

5G1.3 Aliasing is avoided.
5G1.4 Sampling periods to monitor discrete events are

determined correctly through mathematical analysis.
6 Sampling and update

intervals are not
appropriate for the timing
constraints of the
associated control actions.
[H-SR-15]

6G1 Update intervals support the timing constraints of the
required control actions determined through
mathematical analysis.

RIL-1101 Page 49

2.6.2 Contributory hazards from system architectural engineering
Applying the reference model depicted in Figure 4 to the activities of architectural engineering,
Table 14 identifies hazards contributed through some of the resources and elements employed
in these activities and commensurate constraints on these process activities. Additionally, as
stated in Section 2.7, considerations therein “are applicable to architecture-related contributions
to hazards in every phase in the development lifecycle (from conception to implementation), to
every level in the (system, subsystem, component, sub-component …) integration hierarchy,
and to transformations from one level to another.”

Table 14: Examples of contributions to hazards through inadequate system architectural
engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-SAE- Description

ID
H-SAE- Description

1 The architecture82 description
(including requirements allocated to
its elements) is ambiguous, rendering
it vulnerable to interpretations other
than those intended. For example,
textual descriptions use words and
expressions (and graphic
representations use symbols) for
which commonly understood
meanings have not been agreed on
by the community using this
information.
[H-S-2G6↑]
[H-SAE-2↓ and H-SAE-3↓]

1G1 The description method supports distinct,
unambiguous description of the following:
1. Assumptions about the environment.
2. Input from the environment such as a

command (some signal requiring
state-changing effect plus required
behavior), query, or data.

3. Output (that is, some signal having
state-changing effect) or state
notification, including exception
notification.

4. Functions assigned to a human.
4.1. Procedure for the execution of

each function assigned to a
human (required behavior).

5. Other elements of the system.
5.1. Functions assigned to each

element; required behavior.
6. Interrelationships of elements.
7. Interactions required across elements.
8. Constraints on the behavior and

interactions of each element;
e.g., timing constraints (Appendix I) and
QoS constraints.

9. Criteria to monitor and detect violation
of a constraint.

82 The term is used in its comprehensive sense; e.g., it includes conceptual architecture (or requirements
architecture), system design architecture, software design architecture, hardware design architecture,
software implementation architecture, and function/procedure architecture.

RIL-1101 Page 50

Contributory hazards Conditions that reduce the hazard space
ID
H-SAE- Description

ID
H-SAE- Description
1G2 The language (graphic or text-based) used

in the description or specification is
unambiguous; for example, it has:
1. A closed set of language elements.
2. Unambiguous semantics for each

language element.
3. Unambiguous semantics for the

compositions (e.g., rules of composition)
of language elements and their
compositions.

1G3 The method and language are applied
correctly.

2 Transformation or elaboration of
architecture from one lifecycle phase
to another does not preserve
semantics and leads to unintended
behavior.

2G1 Methods and languages to describe,
represent, or specify architectures
(including requirements allocated to
various elements) support unambiguous
transformations or mappings across
architectural artifacts (e.g., transformation
from
(a) system conceptual or requirements
level to
(b) system design level to
(c) software design level to
(d) software implementation level to
(e) procedure or subroutine or function
level).

2G2 Information is used with semantic
consistency across different elements of
the system.

3 When dissimilar elements are
integrated (have to work together),
their interaction results in unintended
behavior caused by semantic
mismatch (e.g., a signal from a
sender does not have the same
meaning for the receiver).

3G1 Methods and languages to describe,
represent, or specify architectures
(including requirements allocated to
various elements) support unambiguous
mapping and integration (including
composability and compositionality for
essential properties) across dissimilar
elements (e.g., interactions across
hardware and software elements).

3G2 Information is used with semantic
consistency across different elements of
the system.

4 When elements from different sources
or suppliers are integrated (have to
work together), their interaction
results in unintended behavior caused
by semantic mismatch (e.g., a signal
from a sender does not have the
same meaning for the receiver).

4G1 Methods and languages to describe,
represent, or specify architectures support
unambiguous transformations or mappings
and integration (including composability
and compositionality for essential
properties) across elements from different
sources or suppliers.

5 A tool used in architectural
engineering is not qualified to

5G1 Each tool is qualified for use in developing
a safety system.

RIL-1101 Page 51

Contributory hazards Conditions that reduce the hazard space
ID
H-SAE- Description

ID
H-SAE- Description

produce, manipulate, or handle an
architectural artifact (e.g., system,
element, and data) supporting a
safety function.

5G2 Restrictions necessary for safe use of a
tool are identified and the set of restrictions
are tracked as a configuration-controlled
item.

6 Tools used in engineering a system,
engineering software, or engineering
hardware do not integrate correctly;
that is, semantics might not be
preserved in information exchanged
across the tools.

6G1 Tools intended to be used collectively or in
an integrated process are configured and
qualified for use in developing a safety
system, as a set that is tracked as a
configuration-controlled item.

6G2 Restrictions on individual tools, their
information-exchange functions, and their
interactions (all of which are needed for
safe use of the tools as a set) are identified
and the set of restrictions is tracked as a
configuration-controlled item.

6G3 Semantics of the information accepted and
provided by the tools are explicitly
represented.

7 A reused element (e.g., from some
previous project or system, previously
verified to satisfy its specifications),
when integrated in this system, does
not provide the intended system
behavior (perhaps because semantics
are not preserved in the flowdown of
specifications or their realization).

7G1 Each pre-existing element is qualified for
the environment83 in which it is to be
reused.

7G1.1 Allocation of requirement specifications
from system to the element is validated to
be correct.

7G1.2 Pre-existing specification of the element
satisfies the requirement specification
allocated from this system.

7G1.3 The element satisfies the allocated
requirements specification.

7G2 Restrictions on the use of a pre-existing
element in the target environment are
identified and the set of restrictions are
tracked as a configuration-controlled item.

7.1 Some assumption about the reused
element or its usage environment is
violated. Also see H-SR-13.
[H-culture-12]

7.1G1 H-ProcState-4G1.2, H-culture-12G1, and
H-SR-13G3

8 Individuals performing architectural
engineering functions might not be
cognizant of the usage limitations of
the tools, elements, and artifacts
accessible to them.

8G1 Human resources employed in
architectural engineering are qualified to
perform their roles, and know the usage
limitations of the tools, elements, and
artifacts available to them; the limitations,
for example, might be incomplete V&V,
known defects and deficiencies, limited
conditions of use, and unvalidated
assumptions.

83 Including assumptions about the environment—also see H-culture-12.

RIL-1101 Page 52

2.6.3 Contributory hazards in software architecture
The information in Section 2.6.1, Table 8, and Table 13 also applies84 to software architecture,
especially to relationships of software with its environment (e.g., hardware elements and human
elements). This section focuses on software elements that are internal to the safety system and
their interrelationships (i.e., interfaces, interconnections, and interactions), whether these are
direct or indirect, intended or unintended, explicit or implicit, static or dynamic, “normal” or
“abnormal.”85

The scope of software architecture activities includes the allocation of requirements and
constraints to elements identified in the software architecture.

Note: The contents of this section are predicated on correct performance of HA, as
discussed in preceding sections, and complete satisfaction of the criteria to prevent, avoid,
eliminate, contain, or mitigate the categories of hazards identified in those sections.

These considerations are applicable to architecture-related contributory hazards in every phase
in the software development lifecycle (from conception to implementation), to every level in the
software integration hierarchy86, and to transformations from one development phase or level to
another.

Table 15: Examples of contributions to hazards through software architecture
Contributory hazards Conditions that reduce the hazard space
ID
H-SwA- Description

ID
H-SwA- Description

1 Software contributes to or
exacerbates the
complexity of the system,
making it difficult to verify
[H-S-1.1↑] and
understand [H-S-2↑].

1G1 The behavior of a non-atomic87 element is a
composition of the behaviors of its constituent
elements, with well-defined and unambiguous rules
of composition.88 (In item 5 in Section A.4 of
Appendix A to [20].)
1. Interfaces of elements include specification of their

behavior, and are unambiguously specified
(adapted from CP 2.3.3.2.2 in [12]).

2. Interactions across elements occur only through
their specified interfaces; that is, the interactions
adhere to principles of encapsulation (adapted
from CP 2.3.3.2.2 in [12]).

1G2 The system is modularized using principles of
information hiding and separation of concerns,
avoiding unnecessary interdependence (in item 7 in
Section A.4 of Appendix A to [20]).

1G2.1 Corresponding specifications are modularized.
1G2.2 Corresponding specifications, plans, and procedures

for verification are modularized.

84 Replace “system” with “software” or consider the scope of the system to be narrowed down to software.
85 Examples might be invalid input, a hardware malfunction, or a human mistake.
86 Examples might be the subsystem, module, and subroutine levels.
87 Non-atomic means that the architecture identifies its subdivisions - it is not the finest-grained element
defined in the architecture.
88 Including conditions for composability and compositionality for required properties.

RIL-1101 Page 53

Contributory hazards Conditions that reduce the hazard space
ID
H-SwA- Description

ID
H-SwA- Description
1G3 Each element (e.g., a software unit) is internally

well-architected, satisfying conditions identified in
Table 13, H-SwA-1G1, and H-SwA-1G2, in such a
way that its quality requirements (Section 2.5.1.1)
can be assured. For example:
1. A software unit implementing some NPP safety

function(s) is composed from semantically
unambiguous atomic functions and data using
well-defined and unambiguous rules of
composition. [H-SwA-1G1↑]

2. Paths from inputs to outputs avoid unnecessary
coupling. [H-SwA-1G2↑]

3. Unnecessary remembering of state information
across execution cycles is avoided. (Adapted from
CP 2.3.3.2.8 in [12].)

2 Order of execution or
timing behavior is not
analyzable correctly
because of system
complexity

2G1 Complexity-increasing behaviors are avoided
[H-S-1.1.1G1↑] while simplicity-increasing features
are preferred; for example:
1. Static configuration of tasks89 to be executed in the

operating software (adapted from the second and
third bullets of CP 2.4.3.8.1 in [12]).

2. Tasks in execution are run to completion90
(adapted from the first bullet of CP 2.4.3.8.1
in [12]).

3. Static allocation of resources91 [H-SA-4G1↑]
(generalized from bullets 2 through 4 of
CP 2.4.3.8.1 in [12]).

3 Behavior is not
analyzable
mathematically or
analysis is not
mechanizable for lack of
a semantically adequate
paradigm or model
underlying the behavior
specification or
description. [H-SAE-{1, 2,
and 3}]

3G1 Behavior specification or description method is based
on a semantically adequate, unambiguous paradigm
[H-SAE-1G1↑ and H-SAE-1G2↑] supporting
association of timing constraints [H-SR-13G4↑], other
properties (Table 8↑), hierarchical nesting, and
abstraction [H-S-1.1G1↑]. An example paradigm is
that of an (extended) finite-state machine (adapted
from [27] and from CP 2.3.4.1.1 in [12]).

89 In this context, a task is a schedulable unit of work. Dynamic creation and destruction of tasks is
avoided.
90 For example, interruption and preemption are avoided or mathematical analysis (See Appendix I)
proves the satisfaction of constraints on timing and order of execution.
91 Resources such as memory (information storage) and processor (execution) time.

RIL-1101 Page 54

2.6.4 Contributory hazards in software architectural engineering
Table 14 is also applicable to the architectural engineering of software, with software-related
refinements added in Table 16.

Table 16: Examples of contributions to hazards through inadequate software architectural
engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-SwAE- Description

ID
H-SwAE- Description

1 Loss of information across disciplines
(e.g., system engineering, software
engineering, and hardware engineering)
caused by the division of organizations,
people, and work along disciplinary lines
[H-culture-9↑].

1G Software is engineered with the
requisite complement of
competence – see H-SRE-1G1
H-SRE-7G1↑

2 Loss of information across disciplines
caused by the use of incompatible
paradigms, methods, and tools across
disciplines.

2G H-SAE-{2G1 and 3G1}↑

2.7 Evaluation of Hardware-Related Hazard Analysis
As in the preceding sections, hardware-related HA is treated in two parts—the product
(Table 17: Examples of contribution to hazards) and the process (Table 18: Examples of
contributions to hazards through inadequate hardware engineering).

Table 17: Examples of contribution to hazards through hardware
Contributory hazards Conditions that reduce the hazard space
ID
H-Hw- Description

ID
H-Hw- Description

1 Failure of
hardware leads to
unanalyzed
conditions
[H-S-1.1.1↑]
(e.g., an unknown
state).

1G1 Only hardware with predictable, well-known, and
well-understood degradation behavior is used.

1G2 Degradation is detectable before failure that could lead to
unanalyzed conditions (e.g., an unknown state) [H-S-1.2G3↑].
(Adapted from the first clause of CP 2.2.3.7 in [12].)

1G3 Safety requirements are specified to keep the system in a
safe, known state at all times, in all modes of usage, including
maintenance, and including degraded conditions. Safety
functions may be online or offline; for example:
1. Monitor hardware conditions [H-SR-4G1↑] through:

1.1. Cyclic or periodic online monitoring or
1.2. Offline surveillance.

2. Detect hardware faults [H-SR-4G2↑]—see H-Hw-1G4.
3. Notify (other automation or a human) of the detection.

[H-SR-4G5↑]
4. Intervene (to keep the system in a safe state).

[H-SR-4G3↑]
5. Perform preventive maintenance such as scheduled

replacements.
6. Provide redundancy, including diverse redundancy.
(Items 1 through 4 are adapted from CP 2.2.3.7 in [12])

RIL-1101 Page 55

Contributory hazards Conditions that reduce the hazard space
ID
H-Hw- Description

ID
H-Hw- Description
1G4 Requirements are identified for independent, timely detection

of a contributory hazard in an instrument or other element on
which a safety function depends. For example:

1. In the case of a bi-stable device, the device can be
feasibly be only in one stable state or the other, so an
indication of both states at the same time is an anomaly.

2. In the case of a continuously controlled electric motor for a
motor-operated valve, if the trajectory of the variables,
electric current, displacement, and time for the transition
from actuation command to completion is outside the
envelope of feasibility, it indicates an anomaly.

3. The trajectory of feasible process-state variables (that is,
their set of values over time) is identified, so that indication
of an instrument anomaly can be derived from sensed
values in the infeasible region.

2 An anomaly in the
state of the
process is not
recognized,
identified, or
correctly
understood
because of
inadequacy in
instrumentation.
[H-SR-23↑]

2G1 Progressive degradation, drift, and such other changes in the
behavior of instrumentation are properly accounted for. Ways
in which this is done might include:
1. Monitoring and tracking of such phenomena.
2. Compensation.
3. Calibration and recalibration.
4. Allowances (margins) for changes that are not accounted

for, are not compensated for, or are unknown.
5. Detection of unacceptable deviation.
6. Appropriate intervention—see items 2 and 4 in H-Hw-1G3.

3 An anomaly in the
state of the
instrumentation for
the safety
functions (or in the
state of another
element in the
environment on
which a safety
function depends)
is not correctly
understood or
recognized.

3G1 The instrument’s or element’s behavior (including its behavior
in fault states) satisfies requisite properties such as those
identified in Table 8.

4 Loss or
interruption of
power.

4G1 See H-Hw-1G3.
Continuity of power is monitored.

5 Disturbance in
power supply.

5G1 See H-Hw-1G3.
Quality of power is monitored.

RIL-1101 Page 56

Contributory hazards Conditions that reduce the hazard space
ID
H-Hw- Description

ID
H-Hw- Description

6 Inadvertent
alteration of
invariant
information
(e.g., program
code or fixed
data).

6G1 Invariant information is stored in read-only memory (ROM).
(Adapted from CP 2.7.3.3.2 in [12]).

7 Change in
hardware that is
nominally
“equivalent” to
replaced hardware
(e.g., is supposed
to be functionally,
electrically, or
mechanically
interchangeable)
causes some
subtle change that
degrades a safety
function.

7G1 Criteria for equivalence are correct and complete. Examples of
sources of differences might be:
1. Differences in timing behavior.
2. Differences in signal-noise discrimination. Also see Table 1.
3. Differences caused by replacing fixed logic with

programmable logic.
7G2 The criteria mentioned in H-Hw-7G1 are satisfied.

Table 18: Examples of contributions to hazards through inadequate hardware engineering
Contributory hazards Conditions that reduce the hazard space
ID
H-HwP- Description

ID
H-HwP- Description

1 Loss of information across disciplines
(e.g., system engineering, software
engineering, and hardware engineering)
caused by division of organizations,
people, and work along disciplinary lines
[H-culture-9↑].

1G1 H-SRE-1G1↑
See H-culture-{4G1, 4G2, 4G3, and
4G4} and Appendix F.

2 Loss of information across disciplines
caused by incompatible paradigms,
methods, and tools across disciplines.

2G1 H-SAE-{2G1, 3G1}↑

3 Preventative maintenance activities on
which a safety function depends are not
performed correctly or in time [28]
[H-Hw-1G3].

3G1 Maintenance schedules specify the
preventative actions explicitly and
correctly [H-Hw-1G3↑].

3G2 These maintenance schedules are
treated as safety-related activities
(including those for performance,
verification, and audit) [Table 1].

4 Preventative protection against
age-related degradation is not provided
in maintenance plans (generalization
from [29]).

4G [See H-Hw-{1G1 and 1G2}.]

5 Computation is incorrect because of a
hardware-software incompatibility

5G1 All interdependent elements are
specified and configured correctly.

RIL-1101 Page 57

Contributory hazards Conditions that reduce the hazard space
ID
H-HwP- Description

ID
H-HwP- Description

caused by change in any of the
following:
1. Hardware (e.g., floating-point

processor).
2. Operating system (OS)
3. OS library software.
4. Compiler
5. Compiler library software.
6. Algorithm (e.g., formula and data

types).
7. Application library software.

 [H-SwRE-2↑]

5G2 The hardware, software, and
transformation are qualified and
configured correctly for conformance
to the specification mentioned in
H-HwP-5G1.
(Generalized from CP 2.4.3.5.8
in [12]).

6 Selection of output destination
(e.g., actuator) or input source
(e.g., sensor) is incorrect (for example,
because of incorrect mapping from
software to hardware).

6G1 I/O-identifying mappings from
requirements to architecture to
detailed design to implementation are
verified to be correct. (Generalized
from first sentence of CP 2.3.3.1.7
in [12]).

2.8 Evaluation of Hazard Analysis related to Software Detailed Design
Review of HA under 10 CFR Part 52, “Licenses, Certifications, and Approvals for Nuclear Power
Plants,” is limited to review of work products from the pre-certification phases of the lifecycle
(e.g., the plan, concept, requirements, and architecture). However, these work products could
also include other constraints remaining after design certification for preventing contribution to
hazards from activities in the later phases. If that’s the case, these constraints could be
identified as part of the licensing basis and could become part of ITAAC commitments.

Many defects found during software detailed design are traceable to (rooted in) deficiencies
from earlier phases in the development lifecycle. Earlier sections of this RIL have identified
examples of those deficiencies as contributory hazards. Those conditions to reduce the
respective hazard spaces also apply to software detailed design.

Table 19: Examples of contributions to hazards through inadequate software detailed design
Contributory hazards Conditions that reduce the hazard space
ID
H-SwD- Description

ID
H-SwD- Description

1 Loss of information across disciplines
(e.g., software architecture engineering and
detailed software design). [H-SwAE-1↑]

G1 H-SAE-{2G1 and 3G1}↑

2 Software contributes to or exacerbates the
complexity of the system, making it difficult to
verify [H-S-1.1↑] and understand [H-S-2↑].
[H-SwA-1↑]

G2 See
H-S-1.1G1
H-S-1.1.1G1
H-S-1.1.2G1
H-S-2G1
H-S-2G3

3 Functions, data items, inputs, outputs, and
variables in software are named in such ways
that the names become difficult to trace back
to system requirements (and further back to

G3.1 Naming conventions and data
dictionaries are established for
ease of comprehension and
bidirectional traceability.

RIL-1101 Page 58

Contributory hazards Conditions that reduce the hazard space
ID
H-SwD- Description

ID
H-SwD- Description

the application domain).
(Adapted from CP 2.3.4.1.2 in [12]).

G3.2 Naming conventions and data
dictionaries are used
consistently.

2.9 Evaluation of Hazard Analysis Related to Software Implementation
Many defects found during software implementation (coding) are traceable to (rooted in)
deficiencies from earlier phases in the development lifecycle. Earlier sections of this RIL have
identified examples of those deficiencies as contributory hazards. The conditions to reduce the
respective hazard spaces affect software implementation also.

Common Vulnerabilities and Exposures (CVE) [30] and Common Weakness Enumeration
(CWE) [31] are forms of contributory hazards in computer programs. Safe programming
languages or safe subsets of appropriately selected programming languages reduce these
hazard spaces effectively.

Table 20: Examples of contributions to hazards through software implementation
Contributory hazards Conditions that reduce the hazard space
ID
H-SwI- Description

ID
H-SwI- Description

1 Behavior is not analyzable
mathematically or analysis is not
mechanizable because of the
complexity introduced through
the improper use of interrupts or
other mechanisms affecting
order of execution.

1G1 Unnecessary use of interrupts is avoided, for
example, by not using interrupts to cover for
inadequately understanding timing behavior of
the physical phenomena (Table 1 and
H-SR-3G7) or the design and implementation
(H-SR-13G4 and H-SR-15G1)

1G2 Schedulability analysis or proof is provided to
verify that timing behavior of the implementation
satisfies the specifications (H-SR-15G1).

2 Timing problems prevent
deterministic behavior.
Timing problems are difficult to
diagnose and resolve.

2G1 The results produced by the programmed logic
do not depend on either the time taken to
execute the program or the time (referring to an
independent “clock”) at which execution of the
program is initiated.
(Adapted from [32].)

2G2 Execution speed does not affect correct order of
execution.

3 DISCUSSION OF REGULATORY SIGNIFICANCE
Hazard analysis of a digital safety system92 could address clause 4.8 in IEEE
Standard 603-1991 [1], which is incorporated by reference in 10 CFR 50.55a(h)(3). In clause 4.8
in IEEE Standard 603-1991 (quoted below), a “condition having the potential for functional
degradation of safety system performance” is a hazard and a “provision … incorporated to
retain the capability for performing the safety functions” is a requirement or constraint to
eliminate, prevent, or otherwise control the hazard.

92 A system to which a safety function has been allocated as a result of a plant-level safety analysis,
which includes a plant-level hazard analysis.

RIL-1101 Page 59

4: A specific basis shall be established for the design of each safety system of the
nuclear power generating station. The design basis shall also be available as needed to
facilitate the determination of the adequacy of the safety system, including design
changes. The design basis shall document as a minimum …:

4.8. The conditions having the potential for functional degradation of safety system
performance and for which provisions shall be incorporated to retain the capability for
performing the safety functions …

Hazard analysis of a digital safety system could support the “analysis…of the major structures,
systems, and components…” required in accordance with 10 CFR 50.34(a)(3) as follows: HA
could support the development of principal design criteria and derivation of design bases from
these criteria [3] and corresponding clause 10 CFR 52.47(a)(2) of [4], “… analysis of the
structures, systems, and components (SSCs) of the facility, with emphasis on performance
requirements, the bases, with technical justification therefor, on which these requirements have
been established, and the evaluations required to show that safety functions will be
accomplished…. The description shall be sufficient to permit understanding of the system
designs and their relationship to the safety evaluations.” Hazard analysis of a digital safety
system could be part of the “analysis…of the major structures, systems, and components…”.
Hazard analysis of a digital safety system identifies design characteristics, unusual or novel
design features, and associated principal safety considerations. In this way the hazard analysis
of a digital safety system could support requirements of clause 5.6 in [1], which depends on
clause 4.8, by yielding principal design criteria, design bases, and derived requirements and
constraints relating to independence with the specificity needed for consistent verification and
validation.

It is recognized from recent licensing-review experiences that generally accepted engineering
standards93 are not sufficiently specific to ensure consistent application, given the trends in
design characteristics, and unusual or novel design features. These novelties require significant
judgment that depends on a high level of subject-matter competence. In consideration of these
trends and similar trends in other application domains and issues encountered in respective
safety reviews, this RIL identifies the associated contributory hazards and corresponding
system characteristics and conditions that reduce the respective hazard spaces. In turn, this
could reduce the judgment space in regulatory evaluation and thus, regulatory uncertainty
perceived by the applicant.

Hazard analysis of a digital safety system could lead to development of principal design criteria,
in addition94 to or overlapping the general design criteria in Appendix A to 10 CFR 50, which
provide only minimum requirements.

Hazard analysis of a digital safety system could lead from principal design criteria to design
bases, including constraints on the architecture and on design and implementation, in such a
way that the performance of the functions and the non-exceedance of the constraints are
verifiable later in the system-development lifecycle. These derived requirements and constraints
lead to the level of design information to which the following requirement in 10 CFR 52.47,
“Contents of Applications; Technical Information,” refers:

“The application must contain a level of design information sufficient to enable the
Commission to judge the applicant's proposed means of assuring that construction

93 The term “generally accepted engineering standards” is mentioned in 10 CFR 50.34(a)(ii)(B), and
includes standards cited in the NRC’s regulatory guides.
94 These additional requirements or constraints may be specific to a facility, system, component or
structure.

RIL-1101 Page 60

conforms to the design and to reach a final conclusion on all safety questions
associated with the design before the certification is granted. The information
submitted for a design certification must include performance requirements and
design information sufficiently detailed to permit the preparation of acceptance and
inspection requirements by the NRC…”

Hazard analysis of a digital safety system could be part of the preliminary analysis which yields
principal design criteria, design bases, and derived requirements and constraints with the
degree of specificity needed for consistent verification and validation. Hazard analysis naturally
organizes this information along flowdown (or dependency) paths from a safety function,
because it follows a cause-and-effect course of inquiry and reasoning, originating from potential
for degradation of the safety function. This cause-and-effect course of inquiry and reasoning
could also support developing specific information required in accordance with
10 CFR 50.34(a)(5) through (8) and 10 CFR 52.47(a)(7) and (19), in those cases for which such
information is critical to safety analysis.

The technical basis and safety-goal-focused organizing framework established in RIL-1101
contributes limited support for risk-informed treatment as follows. It contributes to the
determination of safety significance through systematic identification of a hazard; i.e., potential
for degradation of a safety function allocated to the system under evaluation. As this approach
includes dependency analysis, it also supports identification of contributors to a hazard; for
example, the potential for adverse effect on diversity or defense in depth.

RIL-1101 Page 61

4 CONCLUSIONS
This RIL provides the U.S. Nuclear Regulatory Commission (NRC)’s licensing staff the technical
basis to support their review of hazard analysis (HA) performed on a digital safety system by an
applicant seeking a design certification, combined license, or a license amendment.

The RIL has been focused on certain kinds of issues encountered in NRO’s recent licensing
reviews, which are rooted in systemic causes. These issues arise from engineering deficiencies
during the development of a digital safety system. These deficiencies are characterized as
contributory hazards. Examples of engineering deficiencies include:

1. Unintended or unwanted interactions are not prohibited.
2. The boundary of the digital safety system being analyzed is not defined adequately.
3. Constraints to control hazards from the top level of a digital safety system are decomposed

and allocation incorrectly in the flow down the integration hierarchy; and
4. Corresponding requirements and constraints on technical processes, supporting processes,

and organizational processes are not derived correctly and completely.

Although the targeted scope was limited, the result supports a broader purpose. Hazard
analysis organizes information along cause-and-effect dependency paths (Table 1, items H-0-8
and H-0-9, and Appendix K) from a safety function to a contributing item and provides a
framework for reasoning about the (perceived) deficits (Section C.3.3 of Appendix C). In this
manner, it contributes to risk-informed evaluation of the system.

The cause-and-effect dependency network resulting from hazard analysis provides a
safety-goal-focused organizing framework which an applicant could use to streamline its safety
analysis report, justifying elimination of those provisions in NRC-cited standards which do not
contribute to the safety goal. The applicant could also use this framework to justify alternative
ways of satisfying the NRC’s regulation in cases in which the applicant’s approach is not aligned
with the NRC’s current guidance or standard review plan but meets the safety goal. The
applicant could also use this methodology to analyze a modification to an existing I&C safety
system (e.g., replacement of an older-technology module with a newer digital technology
module) and use the resulting requirements and constraints to drive the modification.

Currently, different sets of regulatory guidance exist for power reactors, nonpower reactors,
research and test reactors, and nuclear-material processing facilities. The organizing framework
introduced in this RIL opens opportunities to harmonize and streamline95 the different sets of
regulation, without increasing the burden of preparing an application or a safety analysis report
for any particular type of system.

This organizing framework leads the way to an improved safety-focused future regulatory
framework, as discussed in the next section.

This study found very little published information organized specifically to support HA reviews
applicable to the targeted scope. Therefore, information assimilated in the RIL includes
knowledge acquired through consultation with external experts. Through this process, RIL-1101
presents a unique assimilation of the state of the art. This technical basis supersedes that given
in [33].

95 For example, in the concept of “item relied on for safety (IROFS)” used in nuclear-material processing
equipment, the “relied on” relation maps into a dependency relation, explained in Appendix K of RIL-1101.

RIL-1101 Page 62

5 FUTURE RESEARCH, DEVELOPMENT, AND TRANSITION
The development of this RIL, including knowledge acquired through reviews by experts, has
revealed many opportunities to improve the effectiveness and efficiency of the regulatory review
process for digital safety systems, as identified below for future consideration in accordance
with the priorities of the licensing offices and the availability of resources.

5.1 Transition, knowledge transfer, and knowledge management
The trend towards systems with increasing interactions, fostered through networks and
software, has rendered traditional hazard analysis techniques, such as FMEA and FTA,
inadequate. Whereas other techniques (Appendix C.6), more suitable for this trend, have been
known for some time, these are less familiar to the NPP industry, including the NRC’s licensing
reviewers. There is a need to make this knowledge more easily deployable in practice, including
illustrative examples. Consistent with recommendations in [34] about domain-specific software
engineering, the knowledge can be made more accessible through techniques to represent the
knowledge of the domain in a form that is easy to find and reuse correctly.

In support of a recommendation by the ACRS I&C Subcommittee, the NRC intends to
coordinate its plans with the Electric Power Research Institute (EPRI) in order to share the
knowledge base that is common across various stakeholders’ activities: System development by
the applicant or its supplier, hazard analysis by the applicant, and its evaluation by the
regulatory reviewer.

In support of a recommendation by the ACRS I&C Subcommittee, transition plans will include
learning cycles (e.g., through pilot applications).

5.2 Integration of safety-significant information from NPP-level analysis
The trend towards systems with increasing interactions, fostered through networks and
software, increases the difficulties of analyzing dependencies of a safety system on conditions
in its environment. For example, the traditional individual FMEA of other I&C SSCs does not
suffice. With the trend in growth in the volume of information, traditional manual methods will not
be scalable. Information sharing and consistency maintenance will require mechanized support.
Future R&D and transition plans will include investigation of more effective methods, such as
tool-supported model-based hazard analysis.

5.3 Harmonization and disambiguation of vocabulary
Differences in vocabulary hamper the NRC’s ability to learn from NPP experience elsewhere in
the world and from other application sectors. The same terms have different meanings. The
same concepts have different terms. Different concepts are combined in different ways,
introducing more terms for the combinations. These combinations are not directly or easily
comparable. These conditions lead to ambiguities and unnecessarily encumber the tasks of
hazard analysis and evaluation.

Technology is available to bridge these communication gaps (e.g., modeling knowledge of the
domain, as mentioned in Section 5.1). The NRC will coordinate its plans with EPRI.

RIL-1101 Page 63

5.4 International harmonization
Different regions of the world pursue the same or similar safety goals under different regulatory
and guidance frameworks, citing different standards. These differences obstruct reaching a
common understanding of the issues and establishing common or harmonized evaluation
criteria. The NRC’s current guidance is closely tied to legacy standards, which are not able to
keep up with the changing technological environment. The safety-goal-focused organizing
framework introduced in this RIL opens an opportunity to remove this obstacle. Building on the
vocabulary harmonization effort mentioned in Section 5.3, opportunities exist in exploring
international harmonization of the technical basis for evaluating hazard analysis.

5.5 Learning from other application domains and agencies
Other regulated application domains, such as life-critical medical devices and mission-critical
flight-control systems are experiencing the same trend towards systems with increasing
interactions, fostered through networks and software. Larger markets than nuclear power are
driving regulatory practices in those domains. Consistent with executive guidance, resources
can be leveraged by coordinating future R&D with other federal agencies [35], including
capability to systematize hazard analysis at the conceptual phase of the system-development
lifecycle [36].

5.6 Analysis earlier in the system-development lifecycle
In the case of new reactors, applications for design certification have included safety analysis of
software that is based more on process conformance than rigorous V&V of the software itself.
Appropriate architectural design and analysis requires abstractions that have not been a part of
common practice in the NPP industry. However, architectural design and analysis is being used
in other critical application domains. Future R&D and transition plans include introducing that
knowledge in the NPP application domain, building on the R&D mentioned in Sections 5.1
and 5.3 and enabling hazard analysis on an architectural model of the system.

5.7 Risk-informed evaluation
Opportuities exist in applying hazard analysis (for example, modeling and analysis of
dependencies on systemic causes) to risk-informed evaluation of systems in which
safety-significant conditions can arise from unintended interactions, engineering deficiencies, or
other systemic causes.

5.8 Integrated hazard analysis for safety, security and other concerns
The organizing framework introduced in this RIL opens an opportunity to extend the design
review for safety to include hazards from breach in security in the digital realm, and to include
hazards contributed through considerations of non-safety objectives driving a safety system’s
configuration.

5.9 Integrated organizing framework
The organizing framework established through hazard analysis, as treated in this RIL, provides
a logical framework to integrate the results of verification activities, as explained in Section 1.7.8
(see Figure 1) and Appendix C.3.3 (see Figure 10). This basis feeds into a related ongoing
research activity to understand how a better “safety demonstration framework” (e.g., an

RIL-1101 Page 64

assurance-case framework) could address issues experienced in regulatory reviews in different
regions of the world. Through the Organisation of Economic Co-operation and Development’s
(OECD’s)/Nuclear Energy Agency’s (NEA’s) Halden Reactor Project, the NRC is collaborating
with other regulatory experts to identify common needs and a common technical basis to meet
these needs. The intent is to shift the paradigm from clause-by-clause compliance with
regulatory guidance to meeting the safety goal, building on the hazard analysis framework
introduced in this RIL. It is envisioned that the same framework could be applied to any level of
integration within a digital safety system (e.g., embedded digital devices). It is expected that this
framework would also provide efficient support to evaluate modifications96 after a reactor
becomes operational.

5.10 Ideas received through review comments
Suggestions and remaining issues identified in review comments are treated as inputs to the
NRC’s next I&C research plan. For example, external expert review suggestions include:

1. Additions for hazards contributed through tools.
2. Extension of the content concerning detailed design and implementation.
3. Additions for hazards contributed through implementations of field-programmable gate

arrays (FPGAs) and complex programmable logic devices (CPLDs).

96 It could support evaluation for 10 CFR 50.59, “Changes, Tests, and Experiments.”

RIL-1101 Page 65

6 ABBREVIATIONS AND ACRONYMS
ACRS Advisory Committee on Reactor Safeguards

ADAMS Agencywide Documents Access and Management System

CFR Code of Federal Regulations

CP common position97

CPLD complex programmable logic device

DI&C digital instrumentation and control

FPGA field-programmable gate array

FMEA fault modes effects and analysis

FTA fault-tree analysis

EQ environmental qualification

HA hazard analysis

HAZOP(S) hazard and operability studies

HQEO high-quality engineering organization

I&C instrumentation and control

IT information technology

ITAAC inspections, tests, analyses, and acceptance criteria

NPP nuclear power plant

NRC U.S. Nuclear Regulatory Commission

NRO Office of New Reactors

PHA preliminary hazard analysis

QoS quality of service

R&D research and development

RAI request for additional information

RES Office of Nuclear Regulatory Research

RIL research information letter

SAR safety analysis report

SRP Standard Review Plan

V&V verification and validation

97 A term used in [12] for a requirement on which the Task Force for Safety Critical Software has total
consensus. This task force consists of regulatory experts from the United Kingdom (UK), Germany,
Sweden, Belgium, Finland, Spain, Canada, and Korea.

RIL-1101 Page 66

7 REFERENCES
[1] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard 603-1991, “IEEE

Standard Criteria for Safety Systems for Nuclear Power Generating Stations,”
Piscataway, NJ, 1991.

[2] U.S. Code of Federal Regulations, “Conditions of construction permits, early site permits,
combined licenses, and manufacturing licenses” Section 50.55, Chapter I, Title 10,
“Energy” (10 CFR 50.55), available at http://www.nrc.gov/reading-rm/doc-
collections/cfr/part050/part050-0055.html.

[3] U.S. Code of Federal Regulations, “Contents of Applications; Technical Information,”
Section 50.34, Chapter I, Title 10, “Energy” (10 CFR 50.34), available at
http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0034.html.

[4] U.S. Code of Federal Regulations, “Contents of Applications; Technical Information,”
Section 52.47, Chapter I, Title 10, “Energy” (10 CFR 52.47), available at
http://www.nrc.gov/reading-rm/doc-collections/cfr/part052/part052-0047.html.

[5] U.S. Nuclear Regulatory Commission (NRC), “Instrumentation and Controls – Hazard
Analysis,” Appendix A (Section 7.0) to the proposed “Design-Specific Review Standard for
mPower iPWR Design,” May 3, 2013, Agencywide Documents Access and Management
System (ADAMS) Accession No. ML12318A200.

[6] Corcoran, W.R., “Hazard recognition for quality, safety, and performance improvement,”
The Firebird Forum, Volume 15, Number 3, March 2012.

[7] NRC, “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power
Plants: LWR Edition – Instrumentation and Controls,” NUREG-0800, Chapter 7 ADAMS
Accession No. ML070550074.

[8] U.S. Department of Defense (DoD), “Department of Defense Standard Practice: System
Safety,” MIL-STD-882E, Washington, DC, May 11, 2012, available at http://www.system-
safety.org/Documents/MIL-STD-882E.pdf.

[9] Ericson II, C.A., Hazard Analysis Primer, self-published through Seattle, WA:
CreateSpace, February 14, 2012.

[10] U.S. Air Force, Air Force System Safety Handbook, Kirtland AFB, NM, July 2000, available
at http://www.system-safety.org/Documents/AF_System-Safety-HNDBK.pdf.

[11] National Aeronautics and Space Administration (NASA), “NASA Software Safety
Guidebook”, NASA-GB-8719.13, Washington, DC, March 31, 2004, available at
http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf.

[12] Task Force for Safety Critical Software, “Licensing of Safety Critical Software for Nuclear
Reactors: Common Position of Seven European Nuclear Regulators and Authorised
Technical Support Organizations,” Revision 2013, available at
http://www.hse.gov.uk/nuclear/software.pdf.

[13] Garrett, C., and G. Apostolakis, “Context in the Risk Assessment of Digital Systems,” Risk
Analysis 19(1):23–32, February 1999.

[14] Vesely, W.E., et al, “Fault Tree Handbook,” NUREG-0492, January 1981, Agencywide
Documents Access and Management System (ADAMS) Accession No. ML12167A103.

http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055.html
http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055.html
http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0034.html
http://www.nrc.gov/reading-rm/doc-collections/cfr/part052/part052-0047.html
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12318A200
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML070550074
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
http://www.system-safety.org/Documents/AF_System-Safety-HNDBK.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf
http://www.hse.gov.uk/nuclear/software.pdf
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12167A103

RIL-1101 Page 67

[15] NASA, “Fault Tree Handbook with Aerospace Applications,” Version 1.1, Washington, DC,
August 2002, available at http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf.

[16] SAE International, “Potential Failure Mode and Effects Analysis in Design (Design FMEA),
Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA),” SAE J1739, Warrendale, PA, January 15, 2009, available at
http://standards.sae.org/j1739_200901/.

[17] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and
Establishing a Critical Items List (CIL) (DRAFT),” Flight Assurance Procedure
(FAP)-322-209, Washington, DC, November 2011, available at
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-
322-208-FMEA-Draft.pdf.

[18] Perrow, C., Normal Accidents: Living with High-Risk Technologies, New York: Basic
Books, 1984.

[19] NRC, “Official Transcript of Proceedings, Nuclear Regulatory Commission: Advisory
Committee on Reactor Safeguards 591st Meeting, Rockville, Maryland, Friday,
February 10, 2012,” ADAMS Accession No. ML12054A637.

[20] NRC, “Software-Related Uncertainties in the Assurance of Digital Safety Systems—Expert
Clinic Findings, Part 1”, Research Information Letter (RIL)-1001, May 2011, ADAMS
Accession No. ML111240017.

[21] International Organization for Standardization (ISO), “Road vehicles—Functional safety—
Part 2: Management of functional safety”, Draft International Standard (ISO/DIS) 26262-2,
July 2009.

[22] ISO and International Electrotechnical Commission (IEC), “Software engineering—
Software product Quality Requirements and Evaluation (SQuaRE)—Guide to SQuaRE,”
ISO/IEC 25000:2005, Geneva, Switzerland, 2005.

[23] U.S. Federal Aviation Administration, System Safety Handbook, Washington, DC,
December 30, 2000, from
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss
_handbook/.

[24] Miller, S.P., et al., “Proving the shalls: Early validation of requirements through formal
methods,” International Journal on Software Tools for Technology Transfer 8(4/5):303–
319, August 2006.

[25] Miller, S.P., et al., “Software Model Checking Takes Off,” Communications of the
ACM 53(2):58–64, February 2010.

[26] International Atomic Energy Agency, “Defence in Depth in Nuclear Safety,” International
Nuclear Safety Advisory Group (INSAG)-10, Vienna, Austria, 1996.

[27] Garrett, C., and G. Apostolakis, “Automated hazard analysis of digital control systems,”
Reliability Engineering & System Safety 77(1):1–17, July 2002.

[28] NRC, “Ineffective Use of Vendor Technical Recommendations,” Information Notice 2012-
06 April 24, 2012, Agencywide Documents Access and Management System (ADAMS)
Accession No. ML112300706.

[29] NRC, “Age-Related Capacitor Degradation,” Information Notice 2012-11, July 23, 2012,
Agencywide Documents Access and Management System (ADAMS) Accession
No. ML120330272.

http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://standards.sae.org/j1739_200901/
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12054A637
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML111240017
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML112300706
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML120330272

RIL-1101 Page 68

[30] U.S. Department of Homeland Security (DHS) and The MITRE Corporation (“MITRE”),
“Common Vulnerabilities and Exposures” (CVE), available at http://cve.mitre.org/.

[31] DHS and MITRE, “Common Weakness Enumeration” (CWE), available at
http://cwe.mitre.org/.

[32] IEC, “Nuclear power plants—Instrumentation and control systems important to safety—
Software aspects for computer-based systems performing category A functions,”
IEC 60880:2006, Geneva, Switzerland, 2006.

[33] NRC, “Software Safety Hazard Analysis,” NUREG/CR-6430, February 1996, ADAMS
Public Legacy Library Accession No. 9602290270.

[34] NRC, “High Integrity Software for Nuclear Power Plants: Candidate Guidelines,
Technical Basis and Research Needs; Executive Summary,” NUREG/CR-6263
(MTR 94W0000114), Volume 1, June 1995, ADAMS Accession No. ML063470590.

[35] Peña, V., R.M. Whelan, and S.V. Howieson, “Best Practices for Federal Research and
Development Partnership Facilities,” IDA Paper P-5148, Institute for Defense Analyses,
Alexandria, VA, June 2014, available at
https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/2014/ida-p-
5148.ashx.

[36] Executive Office of the President of the United States, “Trustworthy Cyberspace:
Strategic Plan for the Federal Cybersecurity Research and Development Program,”
Washington, DC, December 2011, available at
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strate
gic_plan_2011.pdf.

http://cve.mitre.org/
http://cwe.mitre.org/
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML063470590
https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/2014/ida-p-5148.ashx
https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/2014/ida-p-5148.ashx
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf

RIL-1101 Page 69

APPENDIX A: Glossary
The scope of this glossary is limited to this document.

Where a word is not defined explicitly in the glossary, it is understood in terms of common
usage as defined in published dictionaries of the English language (e.g., [1][2][3]).

The glossary focuses on terms that are not commonly understood in the same way, removing or
reducing ambiguity by selecting and using more specific definitions. Where needed, notes
elaborate the definition.

Where possible, the definition of a technical term is traceable to an authoritative reference
source. In cases in which the authorities have different, inconsistent definitions, the glossary
adapts the definition and includes explanatory notes to reduce ambiguity.

The meanings of compound words, terms, and expressions are derived from the meanings of
their constituent words, as defined in this glossary.

Aliasing
In signal processing and related disciplines, aliasing [4] refers to an effect that causes different
signals to become indistinguishable (or aliases of one another) when sampled. It also refers to
the distortion that results when the signal reconstructed from samples is different from the
original continuous signal.
Notes:
1. Aliasing is caused when frequencies higher than one half of the sampling rate are present (by the Nyquist

Theorem, the maximum reproducible frequency is one-half the sampling rate). This results in the higher
frequencies being “aliased” down to look like lower frequency components. (Adapted from definition 1 for
“anti-aliasing” in [5]).

2. Aliasing is prevented through lowpass filtering of the incoming signal to block out frequencies higher than those
that can be accurately reproduced by the given sampling rate. This technique is called anti-aliasing. (Adapted
from definition 1 for “anti-aliasing” in [5]).

Accountability
The quality or state of being accountable (responsible).

Assumption
A premise that is taken for granted, i.e., not validated. Often, It is taken for granted implicitly
Notes:
1. This definition is used in the context of reasoning as a part of safety analysis.

2. Other forms: Assume. Assumed. Assuming.

3. In the course of engineering, a premise may be validated. Then, it is not an assumption anymore.

4. If the premise is not validated, engineering may progress by mapping the assumption explicitly into a
limitation on the use of the system or a condition of use or constraint on usage. Then, the constraint is
treated as any other safety requirement (e.g., hazard analysis evaluates that satisfaction of the
condition is verifiable. Verification activities verify that the condition is satisfied).

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Distortion

RIL-1101 Page 70

Analysis
A process of reasoning showing that a proposition can be deduced from premises (adapted
from [6]).
Notes:
1. The process may entail decomposition. http://plato.stanford.edu/entries/analysis/s1.html#KD.

2. See Kant’s discussion at http://plato.stanford.edu/entries/analysis/s1.html#Kant.

3. Analysis may take various forms:
3.1. Quantitative

3.1.1. Numerical (e.g., analysis of a continuous control algorithm)
3.1.2. Logical
3.1.3. Other forms of mathematical analysis; i.e., where:

3.1.3.1. The reasoning is composed with clear mathematical rules of composition.
3.1.3.2. The reasoning is backed by science (e.g., cause-and-effect laws of engineering).

3.2. Qualitative98, but consistently99 repeatable by comparably qualified performers.

4. Performance of the analysis may entail various degrees of machine assistance:
4.1. Complete mechanization
4.2. Mechanization requiring manual intervention; e.g., human-guided machine processing.
4.3. Completely manual, but consistently repeatable by comparably qualified performers.

5. The term “formal” (along with its variations) is used to mean “mathematical” as in note 3.1.3.

6. Derived forms:
6.1. Analyzability
6.2. Analyzable
6.3. Unanalyzable
6.4. Unanalyzed

Architecture

The structure or structures of the system, which comprise elements (e.g., software), the
externally visible properties of those elements, and the relationships among them and with the
environment (adapted from [7]), where:

1. “Externally visible properties” of an element include behavior (both normal and abnormal) as
seen from outside the boundary (interface) of an element.

2. “Relationships” include interactions and interconnections (communication paths).

Assure
Confirm the certainty of the correctness of the claim, based on evidence and reasoning.
Notes:
1. For example, by proof; see note 3.1.3 in Analysis.

2. Examples of claims:
2.1. The system is safe. (Property: Safety. Value: “Is safe.”)
2.2. Property X of the system holds.

98 See Quality.
99 If the analysis is not consistently repeatable or the analysis method/tool itself is not qualified for safe
use, the system is considered unanalyzable for the purposes of this RIL.

http://plato.stanford.edu/entries/analysis/s1.html#KD
http://plato.stanford.edu/entries/analysis/s1.html#Kant

RIL-1101 Page 71

3. Derived forms:
3.1. Assurance: Certainty of something (Entry 2.1 for Assurance in [1]
3.2. Assurable
3.3. Assurability

Attribute (of quality)
Inherent property or characteristic of a system or its element that can be distinguished quantitatively or
qualitatively. (Adapted from 2.2 in [8].)

Notes:
1. The means of distinction may be manual or automated.

2. Also see “Quality measure” and “Scale.”

Byzantine behavior
In a distributed system, arbitrary behavior in response to a failure [9].
Notes:
1. Arbitrary behavior of an element that results in disruption of the intended system behavior.

2. An element of a system may exhibit a type of behavior, in which it sends conflicting information to
different receivers in the system.

3. Different observers see different states, because the sender sent them different information.

4. Different observers see different states, because they access changing information at different times
(e.g. reading a clock while it is changing).

5. Byzantine fault: a fault presenting different symptoms to different observers.

6. Byzantine failure: the loss of a system service due to a Byzantine fault in systems that .require
consensus.

Claim
A true-false statement about the value of a defined property of a system. (Adapted from [10].)
Notes:

1. A “property” is a quality attribute of the system. (Adapted from 4.3.9 and 4.4.1 in [11].)
1.1. Example of a property: Safety.

2. A property may have supporting sub-characteristics [11].
2.1. Example: Verifiability ← Analyzability ← “Freedom from interference”.

3. Unlike physical quantities, a property’s sub-characteristic might not be measurable on an absolute scale [11].
3.1. Indicators may be associated with a sub-characteristic for its estimation or indirect measurement.

4. A sub-characteristic may be specified in terms of conditions or constraints on its behavior [11].
4.1. Example sub-characteristic of the safety property: Restriction on allowed system states.
4.2. Example sub-characteristic of “freedom from interference”: Constraints on flows or interactions.

5. “Value” may be a single value, a set of single values, a range of values, a set of ranges of values, and limits on
values. Value can be multi-dimensional [11].

6. “Value” may be invariant, may depend on time, or may depend on some other conditions [11].

7. A duration of applicability may be associated with a property (i.e., the property might not be limited to the
present). For example, the property may concern the future behavior of the system [10].

RIL-1101 Page 72

8. Uncertainty (lack of certainty) may be associated with the property [10].
8.1. The value of uncertainty might not necessarily depend on probability.
8.2. Uncertainty may be associated with a sub-characteristic.
8.3. Uncertainty may be associated with the duration of applicability.
8.4. Uncertainty may be associated with other conditions of applicability.
8.5. For example, evaluation of a claim may be based on certain conditions that are formulated in terms of

assumptions that the identified uncertainties do not exist.

Cognitive process
The performance of some composite cognitive activity; an operation that affects mental
contents.

Collective mindfulness
A characteristic of an organization of having the collective mindset necessary to detect and
understand unanticipated conditions100 and to recover from them before they lead to harm.

Note: Awareness is more than simply an issue of “the way in which scarce attention is allocated.”
Mindfulness is as much about the quality of attention as it is about the conservation of attention. It is as
much about what people do with what they notice as it is about the activity of noticing itself. Mindfulness
involves interpretive work directed at weak signals, differentiation of received wisdom, and reframing, all of
which can enlarge what is known about what was noticed. It is the enlarged set of possibilities that suggests
unexpected deviation101 that needs to be corrected and new sources of ignorance that become new
imperatives for noticing.

Complexity
The degree to which a system or component has a design or implementation that is difficult to
understand and verify. (Definition (1)(A) in [5].)
Notes:
1. The selection102 of this definition was favored by Dr. Gerard Holzmann [12].

2. The term “simplicity,” the converse of complexity, is often used to discuss the same issues. It is defined
in [5] as follows: The degree to which a system or component has a design and implementation that is
straightforward and easy to understand.

3. A “complexity measure or indicator” is distinct from the concept of “complexity.”

3.1. See definition (1)(B) in [5] for usage as complexity measure.

3.2. Example of an indicator: The number of linearly independent paths (one plus the number of
conditions) through the source code of a computer program is an indicator of control flow
complexity, known as McCabe’s cyclomatic complexity [5].

3.3. Sometimes, the term “size-complexity” is used to refer to the effect of the number of states and
number of inputs and their values and combinations.

4. Complexity theory is concerned with the study of the intrinsic complexity of computational tasks; that is,
a typical complexity-theoretic study considers the computational resources required to solve a
computational task (or a class of such tasks). It studies what can be achieved within limited time (and/or
other limited natural computational resources) [13]. For example, the time required to solve a problem—
calculated as function f(…) of the size of the instance, usually the size of the input n—is studied for its
scalability (e.g., the computation time is bounded by “order of” O(…) with respect to the input size n).
Similarly, instead of time, one could study the scalability with respect to some other resource constraint
(e.g., space or memory). An example of a useful result from this theory is a premise that only those

100 In the context of RIL-1101, these are mapped into “(contributory) hazards.”
101 In the context of RIL-1101, deviation is mapped into “(contributory) hazard.”
102 Various standards provide different definitions; there is no broadly accepted definition.

RIL-1101 Page 73

problems that can be solved in polynomial time, denoted as O(nk) for some constant k, can be feasibly
computed on some computational device [14]. Applying this thesis to evaluation of system architecture,
one could conclude that, if the input space of a system is not bounded, the system is not verifiable. One
could further conclude that, if the interactions across elements of the system are not bounded, the
system is not verifiable.

Complex logic
An item of logic for which it is not practicable to ensure the correctness of all behaviors103
through verification alone.
Notes:
1. This definition is derived from a combination of the definition of complexity given above and the

following definition in DO-254/ED-80 in Appendix C [15] for “simple hardware item”: “A hardware item is
considered simple if a comprehensive combination of deterministic tests and analyses can ensure
correct functional performance under all foreseeable operating conditions with no anomalous behavior.”
The conditional clause “if a comprehensive combination of deterministic tests and analyses…” is
summarized as “verification.”

2. Therefore, in addition to verification, the demonstration of correctness of complex logic requires a
combination of evidence from various phases of the development life cycle to be integrated with
reasoning to justify the completeness of coverage provided (summarized as development assurance).
Examples include the following:

2.1. Evaluation of the system concept (and conceptual architecture).
2.2. Evaluation of the verification and validation plan.
2.3. Criticality analysis.
2.4. Evaluation of the architecture, including requirements allocation.
2.5. Evaluation of the hazard analysis internal to the system.
2.6. Validation of requirements and constraints on the design and implementation.
2.7. Assessment and audit of all processes, including supporting and management processes.
2.8. Certification104 of organizations developing software.
2.9. Evaluation of the independence105 of the assurance activities.
2.10. See [15] for more detail.

3. Complex logic is typically produced by techniques such as software or hardware description languages
and their related tools. Thus, the assurance of correctness also requires assurance of the languages
and tools.

Comprehensibility
The extent to which the information is easy to understand and valid inferences can be
drawn from it (adapted from definition of comprehensible in [1]).

Constraint
An externally imposed limitation on system requirements, design, or implementation or
on the process used to develop or modify a system (Definition 6 in [16]).

103 This refers to behaviour under all foreseeable operating conditions.
104 Certification of the development organization should be a continual process of certification and

recertification much in the same manner as reactor operators are certified periodically. For example,
the “capability maturity model” integrated certification process developed by the Software Engineering
Institute focuses on assessing the capabilities of development.

105 For example, independence can be evaluated through certification of the assurance process for the
complex logic (e.g., software).

RIL-1101 Page 74

Examples:
1. Pre-conditions and post-conditions.
2. Limits on memory size, cost, deadlines to be met.

Contribute
Help to cause or bring about something (Definition 1.1 in [1]).
Notes:
1. Derived forms:

1.1. Contribution: The thing contributed.
1.2. Contributory: Of, relating to, or forming a contribution.

2. Some experts use the term “cause.” Others sometimes interpret “cause” to mean “direct cause” or “primary
cause” or “closely coupled cause.” However, many factors that influence the result may be distantly coupled
through long chains of dependency relationships; the term “contribute” allows their inclusion.

3. Definition of cause in [1]: Make something (typically something bad) happen (occur).

Contributory hazard

Factor contributing to potential for harm.
Notes:

1. (Excerpt from [17]:) “…. An unsafe act and / or unsafe condition which contributes to the accident106”.

2. Figures 7-1 through 7-4 in [18] illustrate contribution paths.

3. Examples:
3.1. The potential for adverse energy flow [17].
3.2. Inappropriate functions (from Figure 7-5 in [18]).
3.3. Normal functions that are out of sequence (from Figure 7-5 in [18]).
3.4. Functional damage and system degradation (from Section 7.1.1 in [18]).
3.5. Machine-environment interactions resulting from change or deviation stresses as they occur in time and

space (from Section 7.1.1 in [18]).

Cultivate
Develop (improve) a pattern of behavior.

Data
Value, symbol, image or other representation in a form which can be communicated across its
users.
Notes:
1. Data is used as a singular noun, as well as, plural.
2. The users may be people or machines.
3. Data on its own has no meaning. Also see Information.

Design Defect
Frailty or shortcoming of an item resulting from a defect in its concept, and which can be
avoided only through a redesign of the item. (Adapted from [19])
Notes:
1. In RIL-1101, the term is used primarily in the context of the engineering phases of the product lifecycle.

106 Or, for the purpose of this document, to the degradation of a safety function.

RIL-1101 Page 75

2. Definition 2 in 3.764 [16] defines defect as follows, “An imperfection or deficiency in a project component which
causes that component to fail to meet its requirements or specifications so that the component needs to be either
repaired or replaced.” In this definition and other similar definitions of “defect”, the expression “… fail to meet its
requirements or specifications” excludes cases in which the requirement or specification itself is deficient.
However, most defects occur, because the requirements are deficient (e.g., incomplete, inconsistent, ambiguous,
or even incorrect). According to these definitions, a system might not be defective, yet it might lead to a hazard.

3. Referring to the definition for design defect, “a defect … which can be avoided only through a redesign of the
item,” if the redesign is also an attempt to satisfy the same deficient requirements, then the associated
(contributory) hazard might still be present.

Demonstrate
Prove (the assertion in context) through reasoning.
Notes:
1. The assertion may be a claim.
2. The premise in the reasoning may be some evidence supporting the claim.

Dependent
Determined or conditioned by another.
Notes:
1. Other forms:

1.1. Dependency: The quality or state of being dependent on or unduly subject to the influence of another.
1.2. Dependence: Same meaning as dependency.
1.3. Independent

2. For example, if some factor or condition could cause the degradation of a safety function, then the safety function
is dependent on it. Also see “Contributory.” A safety function could be dependent on a contributor in many ways
(paths or channels or couplings) In addition to direct causal paths, a dependency could arise through a side
effect such as interference across activities and resources.

Deterministic
(In the context of a process) such that the resulting behavior is entirely determined by the initial
state and inputs to the process, and which is not random or stochastic.
Notes:
1. The terms “deterministic” and “predictable” are related as follows.

2. Predictability: The degree to which a future state of the system can be determined, i.e., known, given the current
state and for a given set of inputs.
2.1. For a logic system, the “as built” system should behave exactly as predicted through the analysis that is

used in its assurance.
2.2. For a physical (e.g., electrical, hydraulic, or mechanical) system, the “as built” system should behave as

predicted, within specified limits, which are used in the analysis for its assurance. Sometimes, these limits
are known as error bounds. The behavior is considered deterministic, because the variations are attributed
to causal factors which were not modeled with sufficient accuracy in the analysis. Example causes for loss
of accuracy: Discretization of continuous phenomena, such as value of pressure and time of its
measurement; inaccuracy of measuring instrument; coulomb energy losses; coulomb friction; variation in
geometry of a physical object.

Diverse team
A team composed of individuals with complementary attributes needed to perform the assigned
task (e.g., thought processes, communication styles, and competence, including education,
training, and experience in different domains and disciplines).

RIL-1101 Page 76

(System) Element
A discrete constituent of a system (adapted from [20]).
Notes:
1. The term “discrete constituent” is substituted for the word “component” used in the definition from [20] to avoid

confusion with other meanings of “component” in the context of software. The word “discrete” implies that the
constituent has a distinct boundary (that is, an interface with its environment in accordance with the definition
in [21]) and an intrinsic, immutable, unique identity (adapted from [20]).

2. In general, an element is a discrete part of a system that can be implemented to fulfill specified requirements.

3. Examples:
3.1. Hardware element.
3.2. Software element.
3.3. Human element.
3.4. Data element.
3.5. Data structure.
3.6. Process (e.g., a process for providing service to users).
3.7. Procedure (e.g., operating instructions).
3.8. Facility.
3.9. Material.
3.10. Naturally occurring entity (e.g., water, an organism, or a mineral).
3.11. Any combination of these things.

4. An element may have other elements in it (e.g., a subsystem).

5. A system may itself be an element of a larger system.

Environment
A general term relating to everything (including every condition) that supports or affects the
performance of a system or a function of the system. (A combination of 9A and 9B in [5]).
Notes:
1. The environment of a software component consists of all the elements (in their respective states or conditions)

with which it interacts, by which it is affected, and on which it depends. Examples of elements:
1.1. Other software components
1.2. Operating system (common services and resources shared by software components)
1.3. Execution hardware

2. The environment of an electronic hardware component consists of physical environmental conditions and other
hardware components (in their respective states or conditions) with which it interacts, by which it is affected, and
on which it depends. Examples of physical environmental conditions:
2.1. Temperature
2.2. Humidity
2.3. Electromagnetic radiation

3. The “environment” of a system includes the combination of systems and elements (e.g., hardware, software, and
human) external to this system, human elements interacting directly with the system, and the corresponding
manual procedures.

Error
The difference between a computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition. (Definition (8)(A) in [5].)

Evidence
Data supporting the existence or truth of something. (Adapted from 3.1936 in [16].)
Notes:
1. Examples of means of obtaining “raw” evidence: Test, measurement, and observation.

RIL-1101 Page 77

2. Examples of evidence incorporating reasoning:
2.1. Confirmation by static analysis that an implementation satisfies its design specification.
2.2. A claim at one level of integration used as evidence in a claim for the next higher level of integration of a

system.

Failure
The termination of the ability of an item to perform a required function. [22]
Notes:
1. After failure, the item has a fault. [22]

2. “Failure” is an event, as distinguished from “fault,” which is a state. [22]

3. This concept as defined does not apply to items consisting of software only. [22]

4. The following definitions represent the perspectives of different disciplines to reinforce the definition given above:

4.1. The termination of the ability of an item to perform a required function (Definition (1)(A) in [5]).

4.2. The termination of the ability of a functional unit to perform its required function (Definition (1)(N) in [5]).

4.3. An event in which a system or system component does not perform a required function within specified
limits; a failure might be produced when a fault is encountered (Definition (1)(O) in [5]).

4.4. The termination of the ability of an item to perform its required function (Definition 9 in [5]; from a former
standard for “nuclear power generating station”).

4.5. The loss of ability of a component, equipment, or system to perform a required function (Definition 13
in [5]).

4.6. An event that might limit the capability of equipment or a system to perform its function(s) (Definition 14
in [5] from “supervisory control, data acquisition, and automatic control”).

4.7. The termination of the ability of an item to perform a required function (Definition 15 in [5] from a former
standard for “nuclear power generating systems”).

Failure analysis
The logical, systematic examination of a failed item to identify and analyze the failure
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [22].)

Failure mode
The effect by which a failure is observed to occur. [23][24]
Notes:
1. A failure mode is usually characterized by description of the manner in which a failure occurs. For example, in

the case of a relay which fails to close on command, the failure mode is fails to open or fails to close. [23]

2. A failure mode is not characterized in terms of the failure mechanism [23]

3. A failure mode is not characterized in terms of the failure effect. [23]

4. A set of failure modes is characterized in the context of a particular level of assembly or integration. For example,
a failure mode at one level of assembly might be an effect at the next higher level of assembly. [23]

5. Referring to note 3 for failure, in RIL:-1101. the term,.failure mode, is not applied to a software item.

Failure modes and effects analysis (FMEA)
A qualitative method of reliability analysis which involves the study of the failure modes which
can exist in every subitem of an item, as well as the determination of the effects of each failure
mode on other subitems of the item and on the required functions of the item. (191-16-03
in [22].)

RIL-1101 Page 78

Note:
1. Referring to note 3 for failure and note 5 for failure mode, in RIL:-1101, the term, FMEA, is not applied

to a software item.

Fault
The state of an item characterized by inability to perform a required function, excluding the
inability during preventive maintenance or other planned actions, or because of lack of external
resources. (191-05-01 in [22])
Notes:
1. A fault is often the result of a failure of the item itself but may exist without prior failure.
2. Also see “defect.”
3. Distinguish from failure, mistake, and error.
4. (Derived form) Faulty: Pertaining to an item that has a fault.
5. Latent fault: Fault remaining in the digital safety system placed in operation. Also see “resilience.”

Fault analysis
The logical, systematic examination of an item to identify and analyze the probability, causes,
and consequences of potential faults. (191-16-11 in [22])

Fault Mode
One of the possible states of a faulty item, for a given required function. (191-05-22 in
[22])

Fault Modes and Effects Analysis (FMEA)
A qualitative method of reliability analysis, which involves the study of the fault modes, which
can exist in every sub-item of the item, and the determination of the effects of each fault mode
on other sub-items of the item and on the required functions of the item. (191-16-03 in [22])

Fault tolerance
The ability of a system or component to continue normal operation despite the presence of
hardware or software faults (Definition 1 in 3.1127 in [16]).
Notes:
1. “Fault tolerance” is also defined as a discipline pertaining to the study of errors, faults, and failures and

of methods for enabling systems to continue normal operation in the presence of faults (Definition 3
in 3.1127 in [16]).

2. Derived form: “Fault tolerant” or “fault-tolerant”: Pertaining to a system or component that is able to
continue normal operation despite the presence of faults (3.1128 in [16]).

3. For example: Conditions that might degrade the performance of a function of the system are identified;
in anticipation, a constraint is formulated to prevent such degradation, and the resulting system is able
to continue performance of the required function when the anticipated conditions arise.

Fault-tree analysis (FTA)
An analysis to determine which fault modes of the sub-items or external events, or combinations
thereof, might result in a stated fault mode of the item, presented in the form of a fault tree
(191-16-05 in [22]).

RIL-1101 Page 79

Feasible
Capable of being done with the means at hand and circumstances as they are. (Entry for
“feasible” in [3])
Notes:
1. Other definitions also impose such constraints as:

1.1. Practicability.
1.2. Reasonable amount of effort, cost, or other hardship. [25]
1.3. Ease and convenience. (Entry for feasible in [1]).

2. Such constraints distinguish “feasibility” from “possibility.”

Freedom from interference
Freedom from degradation of the performance of a function resulting from interaction across the
system and its environment or interaction across elements of the system.

Note:
1. Interference: Interaction across a system and its environment or across elements of a system that can

degrade the performance of a function. It is not limited to propagation of a failure.

Hardwired
Pertaining to a circuit or device whose characteristics and functionality are permanently
determined by the interconnections107 between components108 (Adapted from Definition 3 in [5]).

Note: The interconnections referred to here are at the level of the printed circuit board or
cabinet, not those internal to integrated circuits.

Hazard
Potential for harm.109
Notes:
1. Usage of the term, hazard, in RIL-1101 is bounded to the context of the object of analysis (e.g. a digital safety

system for an NPP) and its defined environment. Usage of the term, hazard, without such a context is not
meaningful.

2. Definition A in [26] (which is the same as definition 3.1283-1 in [16]) elaborates on the “potential for harm” as
follows, “An intrinsic property or condition that has the potential to cause harm or damage.”

3. At the initial stage of hazard logging (before any analysis of the initial finding), the log might include an item,
which is identified as a hazard, but, after some analysis, is recognized not to be a hazard as elaborated in note 2
(e.g., it might be recognized as an event).and recharacterized.

4. Examples:

1.1. A potentially harmful condition.
1.2. A potentially harmful circumstance.
1.3. A potentially harmful scenario.

107 Examples: Wiring in cabinets and printed paths in circuit boards.
108 Examples: Relays, AND-gates, and OR-gates.
109 In general, potential for “loss” of any kind that is of concern, but the focus of RIL-1101 is potential for harm
through the degradation of a safety function allocated to the object under analysis.

RIL-1101 Page 80

Hazard analysis

Hazard analysis (HA) is the process of examining a system throughout its lifecycle to identify
inherent hazards (see hazard identification) and contributory hazards and to formulate
requirements and constraints to eliminate, prevent, or otherwise control them.

Notes:
1. The “hazard identification” part of HA includes the identification of losses (harm) of concern.

2. This definition is narrower than many definitions of HA, as explained below:

1.1. The scope of the definition excludes the verification that the requirements and constraints have
been satisfied.

1.2. The scope of HA is limited to identification of hazards (including contributors) and formulation of
corresponding constraints. Activities to satisfy these constraints (e.g., architectural design, detailed
design, implementation, and associated processes) are treated as part of the development
process.

1.3. The scope of the definition does not explicitly include quantification. Where appropriate (e.g., for a
hardware component), quantification of its reliability would be implicit in the activity of formulating
requirements and constraints.

Hazard identification
The process of recognizing that a hazard exists and of defining its characteristics [16].

Indicate
To be a sign or symptom of, (Indicate in [1]).

Notes:
1. Derived form: “Indicator”—A device or variable that can be set to a prescribed state based on the

results of a process or the occurrence of a specified condition. [5]

2. Often an indicator is an estimate or a result of evaluation, possibly incorporating judgment, and not
measured on a standardized scale (or norm).

3. An indicator is created for its potential utility in facilitating comparison of the current state with the goal
state rather than for absolute accuracy.

4. Contrast with quality measure.

Information
Data that has been given some meaning within a particular context, such that it can be shared
among its users. (Adapted from 3.1396 in [16]).

Intended
Intentional. (Meaning 2 in [2].)
Notes:
1. An intended item might be one that is not a direct, explicit requirement, but could have been derived

from an explicit goal or requirement.

2. Derived form: “Unintended,” meaning “not intentional” (i.e., it was not even required indirectly or
implicitly).

3. Also see unwanted.

RIL-1101 Page 81

Information hiding
The principle of segregation of design decisions in a computer program that is most likely to
change, thus protecting other parts of the program from extensive modification if the design
decision is changed. The protection involves providing a stable interface which protects the
remainder of the program from the implementation (the details that are most likely to change).

Interaction
A kind of action that occurs when an object affects another.
Notes:
1. An interaction may affect more than one object.

2. An interaction may involve more than two objects.

3. One object may affect another through other intermediate objects (i.e., the interaction might be indirect,
implicit, or a side effect of some other interaction).

4. The direct effect of an interaction might not be observable, when the system or its environment are in a
steady state.

5. An interacting object in the environment of the affected object may be a human, an automated system,
or data.

6. The effect of an interaction may be time-delayed.

7. The number of intermediaries and delays might obscure the cause-effect relationship.

8. An interaction might be unintended, unwanted or unspecified.

9. An interaction might result from some abnormality; for example, invalid input, a hardware malfunction,
or a human mistake.

Item (entity)
Any part, component, device, subsystem, functional unit, equipment, or system that can be
individually considered. (191-01-01 in [22])
Notes:
1. In [26], the term “element” is used to mean “item.”

2. An item may consist of hardware, software, or both, and may, in particular cases, include people.

3. A number of items (e.g., a population of items) or a sample may itself be considered an item.

Mechanize
Introduce machines or automatic devices into a process or activity (Entry for mechanize in [1]).

Mistake
A human action that produces an incorrect result (Definition 3 in [5]).
Notes:
1. In the context of developing a software-dependent system, this definition is applicable to mistakes

concerning requirements development; for example:

1.1. Elicitation.
1.2. Transformation of intent into requirement or constraint specification.
1.3. Explicit statement of assumptions (e.g., about the environment).
1.4. Respective V&V activities.

2. Similarly, this definition is applicable to hazard analysis activities, which are critically dependent upon
the performer’s competence. See Section C.4 in Appendix C.

http://en.wikipedia.org/w/index.php?title=Design_decisions&action=edit&redlink=1

RIL-1101 Page 82

3. The fault-tolerance discipline distinguishes between the human action (a mistake), its manifestation
(a hardware or software fault), the result of the fault (a failure), and the amount by which the result is
incorrect (the error). [5]

Mode
A subset of all the possible functionality and behaviors of a system.
Notes:
1. See Appendix H for examples of NPP modes.

2. Referring to the example in Appendix H, the collection of all the modes would characterize all the functionality
and behaviors of an NPP-level system.

3. In a well-engineered system, valid or eligifble transitions across modes are well defined.

4. The concept of modes and mode transitions can also be applied to finer levels of integration or assembly.

5. The concept of mode is similar to the concept of state, but the difference is that a state characterizes the exact
operating condition of a system.

Mode confusion
A situation in which an engineered system can behave differently from its user’s expectation
because of a misunderstanding or inadequate understanding of the system mode or state.

Organizational culture
Deeply rooted assumptions about human nature, human activities, and social relationship
shared by members of an organization and their expression in values, behavioral patterns, and
artifacts found within the organization.

Process
A set of interrelated activities which transforms inputs into outputs. (Definition 12(A) in [5] and
Definition 3.2217-1 in [16].)
Notes:
1. Definition 4 in [5] makes “including the transition criteria for progressing from one (activity) to the next” explicit.

2. In definition 4 in [5], the expression “that brings about a result” corresponds to “which transforms inputs into
outputs.” The latter is used in the definition above because it identifies a set of starting conditions (inputs), a set
of end conditions (outputs), and the transformational purpose of the process.

3. Examples of transformational processes in an engineering lifecycle of a product: requirements, architecture,
detailed design, and implementation. If the overall engineering is considered a lifecycle process, these may be
identified as phases in that lifecycle process.

Product
Result of a process. (3.2257-4 in [16])
Notes:
1. Referring to Note 3 for process, the term “product” may be used for the final product or for a result of a particular

phase of a lifecycle process.

2. System-requirements specifications, system-architecture specifications, detailed design specifications, (software)
source code, and (software) executable code can all be considered “products.”

RIL-1101 Page 83

Quality
Capability of product to satisfy stated and implied needs when used under specified conditions.
(Adapted from 4.51 in [27].)

Notes:
1. This definition differs from the ISO 9000:2000 “quality” definition; it refers to the satisfaction of stated and implied

needs, while the ISO 9000 quality definition refers to the satisfaction of requirements.

2. The term “implied needs” means “needs that might not have been stated explicitly (e.g., a need that is
considered to be evident or obvious or a need implied by another stated need).”

3. In this context, the term “quality of service” has also been used to mean “quality.”

4. A “quality model” is a defined set of characteristics, and of relationships between the characteristics, which
provides a framework for specifying quality requirements and evaluating quality. (Adapted from 4.44 in [27].)

5. A “quality measure” is an attribute of quality to which a value is assigned. Also see scale.

6. “Quality in use” is the capability or property of the product to enable specific users to achieve specific goals in
specific contexts of use. The expression “in use” refers to the expectations of the end user.

6.1. Actual quality in use might be different from quality in use measured in a test environment earlier in the
product lifecycle, because the actual needs of users might not be the same as those reflected in the test
cases or in the requirements specifications.

6.2. Quality-in-use requirements contribute to identification and definition of external software quality
requirements.

6.3. An example of quality in use: Safety (freedom from harm).

7. “Measurement of external quality” refers to measurement from an external view of the product, in which targets
are derived from the expected quality in use and are used for technical verification and validation. For example,
external software quality would be measured in terms of its capability to enable the behavior of the system to
satisfy its quality-in -se requirements, such as safety.

8. “Measurement of internal quality” refers to measurements during the developmental phases of the product
lifecycle. Targets are derived from targets for measurement of external quality.

Reason
Argument; a logical sequence or series of statements from a premise to a conclusion (adapted
from entry for argument in [2]).
Notes:
1. “Argument”: Also see [28].

2. Derived forms:
2.1. Reasoning: The use of reason.
2.2. Reasonable: Being in accordance with reason (entry for reasonable in [2]).

Reliability (symbol: R(t1, t2)) where t1 and t2 are the start and end times of the interval
respectively.

The probability that an item can perform a required function under given conditions for a given
time interval (t1, t2) (191-12-01 in [22]).

http://www$/#@rohan.sdsu.edu/~digger/305/toulmin_model.htm
http://www$/#@rohan.sdsu.edu/~digger/305/toulmin_model.htm

RIL-1101 Page 84

Notes:
1. It is generally assumed that the item is in a state to perform this required function at the beginning of the

time interval.110

2. The term “reliability” is also used to denote the reliability performance quantified by this probability (see
191-02-06 in [22]).

3. This definition does not apply to items for which development mistakes can cause failures, because
there is no recognized way to assign a probability to development mistakes.

Requirement
Expression of a perceived need for something to be accomplished or realized (adapted
from 4.47 in [27]).
Notes:
1. A “functional requirement” is a requirement that specifies a function that a system or its element must be able to

perform (adapted from 4.22 in [27]).

2. A “quality requirement”111 is a requirement that specifies a quality of a system or its element, where quality may
be one of the following:

2.1. Quality in use (e.g., safety). Quality-in-use requirements specify the required level of quality from the end
user’s point of view.

2.2. External quality. Also see note 7 in the definition of quality.

2.3. Internal quality. Also see note 8 in the definition of quality.

Resilience
The property of a system or its element to recover from faults.
Notes:
1. “Resilience” has been used to describe a property of a system; however, this meaning is not defined in any of the

standards used as references for safety, systems, or software engineering. This usage is metaphoric. derived
from the common-usage meanings given in notes 2 and 3. Use the term “fault tolerance,” usage of which is well
supported in the fault-tolerance discipline.

2. “Resilience” is most commonly used and defined in the context of people. For example: Resilience is the
capacity to withstand stress and catastrophe (http://www.pbs.org/thisemotionallife/topic/resilience/what-
resilience).

3. “Resilience” is also used and defined as a mechanical property of an object or material. For example: The
physical property of a material that can return to its original shape or position after deformation that does not
exceed its elastic limit. (Entry for resilience in [3])

Robustness
The degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environmental conditions (3.2601 in [16].)

Scale (for a quality measure)
An ordered set of values, continuous or discrete, or a set of categories to which an attribute is
mapped (adapted from 2.35 in [8]).

110 For a software component that is faulty to begin with, use of the term “reliability” is neither meaningful

nor helpful; instead, it leads to the misapplication of analysis techniques that served well for traditional
hardware.

111 Colloquially, these are also known as non-functional requirements.

http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience

RIL-1101 Page 85

Notes:
1. The type of scale depends on the nature of the relationship between the values on the scale [8].

2. Four types of scale are commonly defined [8]:
2.1. Nominal: The measurement values are categorical.
2.2. Ordinal: The measurement values are rankings.
2.3. Interval: The measurement values are equi-spaced.
2.4. Ratio: The measurement values are equi-spaced, where the value 0 (zero) is not mapped to any attribute.

3. The valid value space is predetermined.

4. The mapping of the magnitude of the measured attribute to a value on the scale is predetermined.

Separation of concerns
The process of separating a computer program into distinct features that overlap in functionality
as little as possible. A “concern” is any piece of interest or focus in a program. Typically,
concerns are synonymous with features or behaviors [29].

State
The present condition of a (dynamic) system or entity.
Notes:
1. The condition represented by a state is an abstraction of the complete set of observable properties (also

known as state variables) that characterize the behavior of a system.

2. The behavior of a system is characterized as its response to stimuli (set of inputs). The response may
result in some output and state-change (i.e., change in the set of values of its state variables).

State space
The set of all possible states of a dynamic system [30].

Note:
Each state of the system corresponds to a unique point in the state space.

System
Combination of interacting elements organized to achieve one or more stated purposes [31].
Notes:
1. A system may be considered as a product or as the services it provides (adapted from [31]). For

example, at its conceptualization stage, a system may be described in terms of the services it provides
and its interactions with its environment without identifying its constituent elements.

2. The words “combination” and “organized” (instead of “collection”) emphasize that a system is an
“integrated composite” as characterized in the definition for “system” in [32].

3. The expression “to achieve its stated purposes” corresponds to the expression “a capability to satisfy a
stated need or objective” used in the definition for “system” in [32].

4. In practice, the interpretation of its meaning is frequently clarified by the use of an associated noun or
nouns (e.g., reactor-protection system). (Adapted from [31].)

5. RIL-1101 is focused on a digital safety system and its interactions with its environment. Operators,
thermo-hydraulic processes, and related supporting peripheral processes are part of the environment.

6. At the concept phase of the system lifecycle, a system may have no identified internal elements.

6.1. Then, it may be characterized, studied, or analyzed in terms of its behavior and its interactions
with its environment.

6.2. In the trivial case, the system may have no identified constituent elements.

RIL-1101 Page 86

7. Systems can be composed of systems. A system with only software elements is also a system. For
example, if a program is composed of subroutines, the subroutines are elements and the program is a
system.

Systemic
Embedded within and spread throughout and affecting a group, system, or body.
Note:
1. For example, organizational culture and competence are systemic causes, which can affect more than

one element in a system in more than one way.

Systematic failure
Failure, related in a deterministic way to a certain cause, that can be eliminated only by a
modification of the design or of the manufacturing process, operational procedures,
documentation, or other relevant factors [22].
Note:
1. Examples of causes of systematic failures include human mistakes in the following activities:

1.1. The system safety requirements and constraints.
1.2. The specification, design, manufacture, , or integration, or configuration of the hardware.
1.3. The specification, design, implementation, or integration, or configuration of the software.

Traceability
Discernible association among two or more logical entities, such as requirements, system
elements, verifications, or tasks.

Unwanted
Not needed. (Derived from Definition 3 for “want” in [7].)

Note:
1. The need is not intrinsic to the specified requirements.

Validation
Confirmation that a product satisfies the needs of the customer and other identified
stakeholders. (Adapted from 3.3264-5 in [16].)
Notes:
1. “Confirmation” is used instead of “assurance,” the word used in [16], for these reasons:

1.1. To avoid confusion with the use of the word “assurance” in RIL-1101.
1.2. To achieve consistency with the use of “confirmation” in the definition of “verification.”
1.3. “Confirmation” subsumes the term “the process of evaluating” used in definition A in [26].
1.4. “Confirmation” subsumes the term “the process of providing evidence” used in definition B in [26].

2. “Validation” includes confirmation that the requirements are correct, complete, consistent, and unambiguous.

3. The stakeholder-requirements definition activity includes the transformation of various needs into requirements,
including the requirements for validation [15].

3.1. In [26], validation of the stakeholder-requirements definition includes HA.

3.2. In the context of an NPP safety system, “stakeholder requirements” mean NPP safety requirements
allocated to and intended for this safety system.

3.3. “Requirements for validation” include assurability.

4. The activity of validation includes the confirmation that the specification for each lifecycle phase satisfies the
needs of the customer and other identified stakeholders.

RIL-1101 Page 87

5. A clarification of the expression “the needs of the customer and other identified stakeholders” is provided in
definition B in [26] as follows: Solve the right problem (e.g., correctly model physical laws, implement business
rules, and use the proper system assumptions) and satisfy intended use and user needs.

6. The concept of “validation,” as defined, subsumes the concept of “verification.” However, there is a lack of clear
agreement across various authorities on the subsumption of “verification” in “validation.”

7. “Product” subsumes the elaboration “system, software, or hardware and its associated products” used in
definition B in [26].

8. “Satisfies” is used instead of “meets,” the word used in [16] in order to maintain consistency with the usage in the
definition of “verification.”

9. The elaboration “….satisfy requirements allocated to it at the end of each life cycle activity” in definition B in [26]
is subsumed in the expression “satisfies the needs of the customer and other identified stakeholders”.

Verification
Confirmation that specified requirements have been satisfied. (Adapted from 3.3282-3 in [16].)

Notes:
1. Various standards and authorities have different definitions which are inconsistent with each other. The definition

given above abstracts commonality to the extent possible. The following notes provide explanations, with
attempts to reconcile some differences across certain definitions where possible.

2. The term is also used to mean “the process of confirmation that specified requirements have been satisfied.” The
usage context will distinguish the two meanings, “confirmation” and “process of confirmation.”

2.1. Definition A in [26] defines verification as “The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed at the start of that
phase.” The act of evaluating includes reviewing, inspecting, testing, checking, auditing, or otherwise
determining and documenting (also see note 9 below). The term “confirmation” in the definition is used to
mean that the result of the determination is TRUE.”

2.2. The object of verification is implied in the definition (e.g., confirmation that a product satisfies its specified
requirements).

3. Definition 3 in [16] uses the term “fulfilled”; however, to reduce potential ambiguity, the term “satisfied” is used
(which is also used in definition 1 in [16]) in the general sense of propositional satisfaction and constraint
satisfaction.

3.1. Definition 2 in [16] uses the term “formal proof,” favoring this substitution.

3.2. Definition 6 in [16] uses the term “comply with,” which may be mapped conservatively into “satisfy.”

3.3. Definition B in [26] uses the term “conforms to,” which may be mapped conservatively into “satisfies.”

4. Definitions 3 and 6 in [16] also include the phrase “through the provision of objective evidence.” This phrase is
omitted because the concept “satisfied,” as explained in Note 3, subsumes it.

5. Definition A in [26] uses the expression “satisfy the conditions imposed at the start of that phase”; this expression
is mapped into “specified requirements” in the definition above.

6. Definition B in [26] elaborates “… for all life cycle activities during each life cycle process”; the definitions of
product and process subsume this elaboration.

7. Definition B in [26] elaborates “satisfy standards, practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle
activities”; the term “specified requirements” in conjunction with the definitions of product and process subsumes
this elaboration.

8. Definition B in [26] includes the statement “Verification of interim work products is essential for proper
understanding and assessment of the life cycle phase product(s).” This statement does not add to the definition
of “verification.”

9. Definition 3 in [5] elaborates “The act of reviewing, inspecting, testing, checking, auditing, or otherwise
determining and documenting whether …”; the term “process” in the definition given in Note 2 abstracts this
elaboration.

RIL-1101 Page 88

10. Verification at each lifecycle phase does not imply verification of the end product, because its scope does not
include the confirmation that the specification for each lifecycle phase satisfies the requirements at the initial
phase (e.g., stakeholder requirements [26] for the end product). This confirmation is considered a part of
validation activities; however, there is a lack of clear agreement across various standards and authorities on this
separation of verification and validation.

References for Appendix A
[1] Oxford University Press, available at

http://www.oxforddictionaries.com/us/definition/american_english/.

[2] Merriam-Webster, Incorporated, “Definition and More from the Free Merriam-Webster
Dictionary,” available at http://www.merriam-webster.com/dictionary/.

[3] Princeton University, “WordNet Search - 3.1” available at
http://wordnetweb.princeton.edu/perl/webwn?.

[4] Wikipedia.org, “Aliasing - Wikipedia, the free encyclopedia,” available at
http://en.wikipedia.org/wiki/Aliasing.

[5] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard 100-2000, “The
Authoritative Dictionary of IEEE Standards Terms,” 7th edition, Piscataway, NJ, 2000.

[6] Caygill, H., A Kant Dictionary, Hoboken, NJ: Wiley-Blackwell, July 1995; for a summary of
its definition of “analysis,” see http://plato.stanford.edu/entries/analysis/s1.html#KD.

[7] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, 2nd edition,
Boston: Addision-Wesley, April 2003, as quoted at
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm.

[8] ISO and IEC, “Systems and software engineering—Measurement process,”
ISO/IEC 15939:2007(E), Geneva, Switzerland, 2007.

[9] Schneider, F.B., “Understanding Protocols for Byzantine Clock Synchronization,” Cornell
University, Ithaca, New York, Technical Report (TR)-87-859, August 24, 1987, available at
http://ecommons.library.cornell.edu/bitstream/1813/6699/1/87-859.pdf.

[10] ISO and IEC, “Systems and software engineering—Systems and software assurance—
Part 1: Concepts and vocabulary,” ISO/IEC DIS 15026-1:2013, Geneva,
Switzerland, 2013.

[11] ISO and IEC, “Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models,”
ISO/IEC 25010:2011, Geneva, Switzerland, 2011.

[12] U.S. Nuclear Regulatory Commission, “Software-Related Uncertainties in the Assurance of
Digital Safety Systems—Expert Clinic Findings, Part 1”, Research Information Letter
(RIL)-1001, January 2011, Agencywide Documents Access and Management System
(ADAMS) Accession No. ML111240017.

[13] Goldreich, O., Computational Complexity: A Conceptual Perspective, Cambridge, UK:
Cambridge University Press, April 2008.

[14] Cobham, A., “The intrinsic computational difficulty of functions,” in Bar-Hillel, Y., ed., Logic,
Methodology, and Philosophy of Science, Proceedings of the 1964 International Congress,
Amsterdam: North-Holland Publishing, 1965.

[15] RTCA, Inc., and the European Organisation for Civil Aviation Equipment (EUROCAE),
“Design Assurance Guidance for Airborne Electronic Hardware,” RTCA
DO-254/EUROCAE ED-80, Washington, DC, and Malakoff, France, April 19, 2000.

http://www.oxforddictionaries.com/us/definition/american_english/
http://www.merriam-webster.com/dictionary/
http://wordnetweb.princeton.edu/perl/webwn?s=feasible
http://en.wikipedia.org/wiki/Aliasing
http://plato.stanford.edu/entries/analysis/s1.html#KD
http://plato.stanford.edu/entries/analysis/s1.html#KD
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm
http://ecommons.library.cornell.edu/bitstream/1813/6699/1/87-859.pdf
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML111240017

RIL-1101 Page 89

[16] ISO, IEC, and IEEE, “Systems and software engineering—Vocabulary,”
ISO/IEC/IEEE 24765:2010, Piscataway, NJ, 2010.

[17] AviationGlossary.com, “Contributory Hazard | Aviation Glossary,” available at
http://aviationglossary.com/aviation-safety-terms/contributory-hazard/.

[18] Federal Aviation Administration, “FAA System Safety Handbook, Chapter 7: Integrated
System Hazard Analysis,” Washington, DC, December 30, 2000, available at
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss
_handbook/media/Chap7_1200.pdf.

[19] BusinessDictionary.com, “What is design defect? definition and meaning,” available at
http://www.businessdictionary.com/definition/design-defect.html#ixzz3H4G4twDt.

[20] Institute of Electrical and Electronics Engineers, IEEE Standard 1233-1998, “IEEE Guide
for Developing System Requirements Specifications,” Piscataway, NJ, 2012, 1998.

[21] ISO and IEC, “Information Technology—Vocabulary—Part 1: Fundamental Terms,”
ISO/IEC 2382-1:1993, Geneva, Switzerland, 1993.

[22] IEC, “International Electrotechnical Vocabulary, Chapter 191: Dependability and Quality of
Service,” IEC 60050-191:1990-12, Edition 1.0, Geneva, Switzerland, 1990.

[23] Institute of Electrical and Electronics Engineers, IEEE Standard 500-1984 P&V, “IEEE
Standard Reliability data for Pumps and Drivers, Valve Actuators, and Valves,” excerpted
from ANSI/IEEE Std 500-1984, New York, NY, 1986.

[24] Institute of Electrical and Electronics Engineers, IEEE Standard 1100-2005, “IEEE
Recommended practice for Powering and Grounding Electronic Equipment,”
Piscataway, NJ, 2005.

[25] U.S. Department of Transportation, Federal Highway Administration, “Appendix B:
Glossary - Sidewalks - Publications - Bicycle & Pedestrian
Program - Environment - FHWA,” available at
http://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/sidewalks/appb.cfm.

[26] Institute of Electrical and Electronics Engineers, IEEE Standard 1012-2012, “IEEE
Standard for System and Software Verification and Validation,” Piscataway, NJ, 2012.

[27] ISO and IEC, “Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—Guide to SQuaRE,” ISO/IEC 25000:2014(E),
Geneva, Switzerland, 2005.

[28] Toulmin, S, The Uses of Argument, Cambridge, UK: Cambridge University Press, 1958.

[29] Wikipedia.org, “Separation of concerns - Wikipedia, the free encyclopedia,” available at
http://en.wikipedia.org/wiki/Separation_of_concerns.

[30] Scholarpedia.org, “State space - Scholarpedia,” available at
http://www.scholarpedia.org/article/State_space.

[31] IEEE, “Systems and Software Engineering—Software Life Cycle Processes,” IEEE
Standard 12207-2008, Piscataway, NJ, 2008.

[32] U.S. Department of Defense, “Department of Defense Standard Practice: System Safety,”
MIL-STD-882E, Washington, DC, May 11, 2012, available at http://www.system-
safety.org/Documents/MIL-STD-882E.pdf.

http://aviationglossary.com/aviation$#@safety$
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap7_1200.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap7_1200.pdf
http://www.businessdictionary.com/definition/design-defect.html#ixzz3H4G4twDt
http://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/sidewalks/appb.cfm
http://en.wikipedia.org/wiki/Separation_of_concerns
http://www.scholarpedia.org/article/State_space
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
http://www.system-safety.org/Documents/MIL-STD-882E.pdf

RIL-1101 Page 90

APPENDIX B: Technical Review Process
Technical reviews of this document were performed iteratively for the purpose of acquiring
knowledge outside the nuclear power-plant (NPP) domain relevant to evaluation of an
applicant’s hazard analysis (HA) of a digital instrumentation and control (DI&C) system for
safety functions in a NPP.

The Office of Nuclear Regulatory Research (RES) employed the services of Safeware
Engineering Corporation (SEC) [1] as a neutral agent to interface with external experts. SEC
obtained nine experts spread across safety-critical software and systems research experience
outside of the commercial NPP industry (e.g., space exploration, military defense, and the
aviation industry).

Unlike typical peer reviews, in this process, the expert provided the content needed to bring the
report to the expert’s standard of technical soundness, along with an explanation and
justification of the modification, addition, or subtraction of material.

Review process
The technical reviews were performed iteratively at evolving stages of Research Information
Letter (RIL)-1101. Each iteration was treated as a knowledge-acquisition cycle from which
results were integrated into the development of RIL-1101 before submitting it for the next review
cycle.

Each review cycle followed the procedure outlined below:

1. The NRC and SEC provided orientation to the expert as follows

1.1. The NRC sent to the expert three documents to prepare for a face-to-face discussion:

1.1.1. A draft of RIL-1101;

1.1.2. A review template specific to the review cycle; and

1.1.3. A set of slides introducing the NPP application domain, key issues addressed in
RIL-1101, and scope and request-response sequence for the project.

1.2. Then, in a face-to-face meeting, the NRC and SEC walked the expert through the slide
set, engaging the expert in clarifying discussion. Then NRC and the expert discussed
the review template for clarification of the task and how well it matched the expert’s
interest. The review was scoped accordingly.

2. The expert provided a written review response as follows:

2.1. Responses to specific questions in the NRC-provided review template. Typically, the
expert provided these responses in tabular form as suggested in the template.

2.2. Rationale or explanation supporting the proposed changes.

2.3. Supporting references, mostly incorporated by reference.

2.4. Supporting examples or case studies in the expert’s experience or research to support
an assertion or guidance item applicable to the scope of RIL-1101 (e.g., by
generalization through inductive or abductive reasoning).

3. NRC staff and the expert discussed the expert’s responses in a teleconference moderated
by SEC. Most of the responses concerned the clarity of the intended messages. For
“easy-to-resolve” comments, the disposition was discussed in the teleconference.

4. In some cases, the expert provided modified or supplemental responses.

RIL-1101 Page 91

5. The NRC proposed disposition of expert’s suggestions, sometimes including followup
questions for discussion with the expert.

6. The NRC discussed its proposed disposition with the expert. Depending on need and
scheduling feasibility, sometimes the NRC walked the expert through the disposition in a
teleconference. In most cases, NRC met the expert face-to-face to clear remaining issues
that could not be resolved efficiently through teleconferencing.

Although the initial plan had included resolution of conflicting inputs from different experts
through cross-expert discussion, there was no conflict between experts about technical
soundness.

Reference for Appendix B
[1] U.S. Nuclear Regulatory Commission, “Digital Instrumentation and Control - Technical

Engineering Services,” commercial contract V6065, September 2012, Agencywide
Documents Access Management System (ADAMS) Accession No. ML12284A214.

https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12284A214

RIL-1101 Page 92

APPENDIX C: Evaluating Hazard Analysis—State Of The Art
The scope of this appendix is limited to the scope of Research Information Letter (RIL)-1101,
especially analysis of contributory112 hazards in digital safety systems for nuclear power plants
(NPPs), which are rooted in systemic causes. For example, it does not elaborate on analysis of
hazards from random hardware failure. It does not discuss analysis of systems with a mix of
safety and non-safety functions (mixed-criticality systems). Whereas almost all of the surveyed
publications are much broader in scope, this appendix maps the extracted information into the
narrower scope of this RIL. For example:

1. It covers only a relevant subset of the wide range of hazard-analysis (HA) activities.

2. It does not discuss techniques exclusively suited to analysis for random failure of hardware
components in a system.

3. Its starting point, the loss of concern, is the degradation of a safety function allocated to an
NPP digital safety system; in contrast, the NPP-level loss of concern would be the unwanted
release of radioactivity.

C.1 Contextual interpretation of terms
The specific interpretation of the terms, hazard and hazard analysis, depends upon the context.
Section C.1.1 reviews the general context that was introduced in the glossary definitions of
these terms. Section C.1.2 illustrates different types of objects, on which HA may be performed
in the course of HA for an NPP digital safety system. Section C.1.3 introduces different
contexts of an object of HA, based on its position in the dependency network influencing an
NPP digital safety system.

C.1.1 General context of hazard analysis
The vocabulary in this appendix is defined in Appendix A. As defined and explained therein,
a hazard is potential for harm, in the context of the digital safety system being analyzed, as well
as in the context of its environment. A hazard is an intrinsic property or condition (state113) of
the system, including its interaction with its environment.” HA of an object is the process of
examining the object throughout its lifecycle to identify hazards (including contributory hazards)
and requirements and constraints to eliminate, prevent, or otherwise control these hazards.

C.1.2 Object of analysis
Referring to the reference model for system integration levels depicted in Figure 4 of [1], the
object of analysis may be any of the following:

1. An intermediate work product of the system to be analyzed or an object within the system
such as:
1.1. Concept of a digital safety system; for example, a reactor-protection system (RPS).
1.2. One of the four identical divisions of the digital safety system; the information needed

for analysis (hereafter in this list, information source) may be the system architecture).

112 IEEE 1012-2012 [1], “IEEE Standard for System and Software Verification and Validation,” introduces
the notion of contributory hazards; e.g., software and hardware contributions to system hazards.
113 Annex J.1 in [1]: “…determine whether the contributing conditions to a hazardous state are possible.”

RIL-1101 Page 93

1.3. An element responsible for the voting logic used in the system; (information source:
system architecture).

1.4. A system at a lower level of integration (information source: system architecture).
1.5. The most finely grained component in the integration hierarchy (information sources:

software architecture and hardware architecture).
1.6. An object in the environment of the object being analyzed, on which the latter depends

(information source: NPP-wide I&C architecture).
1.7. Result of an intermediate phase to produce any of the above (information source:

development lifecycle model).
2. A process activity producing a work product mentioned above (information source: process

activity model).
3. A resource used in a process activity mentioned above; (information source: process activity

model). See Figure 4.
4. Any other object in a path of contributory hazards (i.e., in the dependency network).

C.1.3 Analysis at different levels in the dependency network
The dependency network of the top-level system provides an organizing framework for
supporting HA of objects in the dependency network. For each object, the starting point of its
HA would include the following:

1. The derived requirements allocated to it.
2. Its boundary with respect to its environment
3. Its relationship to its environment
4. Associated assumptions.

If HA of different objects is occurring concurrently (e.g., analysis for impact of changes), based
on assumptions about their place and relationships in the dependency network, then, for the
implications of these assumptions, see the following items in this RIL:

• Table 3, H-culture-12;
• Table 5, H-ProcState-4;
• Table 9, H-SR-12 through 14;
• Table 10, H-SRE-2G2; and
• Table 14, item 1 of H-SAE-1G1 and H-SAE-7.1.

C.2 Reference lifecycle model for hazard analysis
Independent hazard analysis of a digital safety system is part of its safety-analysis activities
(also see Section 1.7.8). These activities are performed by people who are organizationally
independent from the mainstream development. The initial HA and verification and validation
(V&V) are also performed by the mainstream development organization [2]. The independent
HA is intertwined with associated development engineering activities and uses its work
products, as depicted in Figure 9 and charted in Table 21. The independent team may engage
the initial HA team in review and walks through its work products.

In the context of hazards contributed through engineering deficiencies, a contributor may be
detected and controlled during various activities in the system development lifecycle:

1. V&V and HA activities of the mainstream system development, organization;
2. Independent verification activities; or

RIL-1101 Page 94

3. Independent HA activities.

In general, the higher the quality of the upstream processes, the smaller the hazard space
downstream will be and the lower the number of hazards within downstream work products will
be. On the other hand, ill-controlled upstream processes could leave such a large hazard space
in their work products that the downstream verification and HA are rendered infeasible.
Recognizing the wide variation in the practice of upstream system engineering, for the purpose
of consistent comprehensible concise treatment of the inter-relationship of HA with the other
processes, the state of the art in system and safety engineering is used as a baseline and
reflected in the lifecycle reference model depicted in Figure 9. The reference model is derived
from information in [1] applicable to an NPP digital safety system. Thus, the independent HA
activities are characterized under the following premises:

1. Mainstream system-development activities are performed in accordance with the
specifications of their respective processes.

2. Resources used in these development activities are qualified to meet their respective
specified requirements or criteria.

3. V&V processes fulfill the objectives stated in Section 1.4 of [1].

4. Verification activities (on the object of verification) confirm that the requirements specified for
that object are satisfied.

4.1. Anomalies are detected as early in the lifecycle as possible, in accordance with [1].

4.2. Detected anomalies are resolved in accordance with [1].

5. Supporting audits of the process activities in execution examine whether these activities are
being performed in accordance with their specifications, using resources that conform to
their respective requirements. Deficiencies are corrected promptly.

6. Mainstream validation activities confirm that the various specifications collectively satisfy the
requirements intended from the NPP-level safety analysis.

7. The object of analysis has passed its V&V criteria.

Under premises 1 through 7 stated above, independent HA activities provide an independent
search for the remaining “conditions having the potential for functional degradation of safety
system performance” (known as hazard identification) and seek their control (e.g., avoidance or
elimination) through corresponding requirements and constraints. This search starts from the
safety function of concern, first identifying the direct hazards, and then, for each hazard,
progressing “upstream” through the dependency paths to identify the contributory hazards. The
independent HA perspective is broader than the mainstream activities; for example, it may
examine obscure contributors such as the following:

• Interpretations of a requirement specification;
• Flowdown of derived requirements and constraints;
• Flowdown of quality requirements;
• Validity of the process specifications and resource qualification criteria; and
• Assumptions.

To the extent that premises 1 through 7 stated above are not satisfied, the deficiency results in
additional burden on the independent HA activities, requiring correspondingly additional skills
and effort.

RIL-1101 Page 95

A regulatory review of HA may be viewed as yet another round of independent HA. Thus, the
regulatory-review activities follow the same pattern.

 Figure 9: Hazard analysis in relation to development lifecycle and verification activities.

RIL-1101 Page 96

C.3 HA tasks—an example set
Table 21 outlines an illustrative example set of HA tasks, based on the reference model in [1].
Each of the tasks, labeled T1 through T7, is characterized in terms of a set of inputs (the
information analyzed) and outputs (the results of the task). The rightmost column in the table
cites the genesis of the task-formulation. An identified deficiency (e.g. inadequacy in the input
information) requires some corrective action and change. Every change requires a review for
the effect of the change.

Tasks T1 through T3 start in the planning phase of the system engineering lifecycle. HA in the
planning phase might identify gaps in the input information and thus drive engineering effort to
fill the gaps. Phase-advance clearance is the final output. Upon this clearance, the project may
advance to the activities of the next phase. This clearance concept is sometimes known as a
quality gate or a safety gate. Proceeding further into development without satisfying the gate
criteria could result in much rework and wasted effort later. In some cases, the deficiency may
be irreparable.

Task T4 is started in the concept phase of the system engineering lifecycle. In a “green-field”
concept, the information available might only be a functional concept. Yet it is sufficient to
develop the questions to be addressed from the HA perspective through the “hazard logging”
process. In this case, task T4 may be iterated many times, as the concept evolves.
Systematized management of change and configuration (e.g., through minor or internal version
identifiers) enables recorded, traceable rationale underlying the evolution path. In a modification
of an existing NPP, the concept might be much more developed (e.g., a proposed NPP-level
I&C re-architecture), enabling more detailed investigation for the identification of (contributory)
hazards.

When the system concept and requirements specification become stable, task T4 transitions
to T5, at the start of which, the term “object” refers to the system-requirements specification
(corresponding to task 203 in [3]). Tasks T5 and T7 are iterated as the system architecture
evolves. The iterations include task T6 when a lower level of integration is identified in the
system architecture.

Table 21: HA activities and tasks—a reference model

HA activity / task Input Output
Remarks and
References.

T1. Generate baseline HA plan
for all lifecycle phases.

1. Concept [1], including
interactions with and
dependencies on its
environment.

2. Requirements from NPP
level safety analysis.

3. Premises & assumptions
on which the expected
outcome depends,
including conditions &
modes of operation and
maintenance.

4. Plan to validate
assumptions.

5. Consequences of

Baseline114 HA plan. Adapted from
Tasks 7.1:1
through 7.1:4 in
Table 1a in [1] and
Task 101.2.2 in [3].

T2. Identify dependencies of HA
plan (e.g., other information,
resources, and dependencies
on supply chain)

Dependencies of plan. Adapted from
Tasks 7.1:1
through 7.1:4 in
Table 1a in [1] and
from [3].

T3. Evaluate other plans,
following the dependencies
identified above.

Coordinate these information

1. Evaluation report.
1.1. Deficiencies.
1.2. Changes needed.
1.3. Request for additional

information (RAI).

Adapted from
Tasks 7.1:1
through 7.1:4, 7.4,
and 7.5 in Table 1a
in [1].

114 While mainstream HA produces the baseline, independent HA identifies changes needed.

RIL-1101 Page 97

HA activity / task Input Output
Remarks and
References.

exchanges (e.g., timing,
semantic compatibility, and
format) with HA activities.

behavior shortfalls,
including invalid
assumptions/premises.

6. Overall V&V plan,
including HA.

7. Mainstream development
plan.

8. Corresponding
information about or from
entities in the
dependency paths
(e.g., up the supply
chain).

2. Rejection or
Acceptance
(including
phase-advance
clearance)

Adapted from
Tasks 1 through 4
in Table 1a in [1].

3. Revision to HA plan
as needed.

Adapted from
Tasks 7.1:1
through 7.1:4 in
Table 1a in [1].

T4. Understand HA-relevant
characteristics of the object to
be analyzed; examples:
1. Differences from previously

licensed systems.
2. Exposure to unwanted

interactions.
3. Presence of functions not

needed for the primary
safety function.

4. Division of work and
communication challenges
across organizational
units/interfaces.

5. Compatibility of lifecycle
models, processes,
information-exchange
interfaces, etc.

6. Qualification and
compatibility of tools across
these interfaces.

7. Compatibility of conditions
of use for reused objects.

8. Correct, complete
flowdown, decomposition,
or derivation of
requirements.

9. Identification of
dependencies
(e.g., feedback paths and
hidden or obscure
couplings).

10. Premises and
assumptions, both explicit
and implicit.

11. Other challenges to
analyzability.

Items above plus:
9. Other requirements

allocated to the object.
10. Nonsafety-related

constraints on the object.
11. Relationship with

NPP-wide I&C
architecture.

12. Distribution of
responsibilities across
organizational
units/interfaces.

13. Provisions for information
exchange across
organizational
units/interfaces.

14. Lifecycle models,
processes, resources
(e.g., tools and
competencies), and
information-exchange
interfaces.

15. Identification of reused
objects and conditions of
use.

16. Explicit record of
dependencies.

17. Prior HA results, if any.

1. Revision to HA plan.
2. Addition to hazard

log. [4]
3. Change needed;

examples:
3.1. Making assumptions

explicit;
3.2. Improvement in

knowledge of
dependencies;

3.3. Making lifecycles and
processes
compatible;

3.4. Making
information-exchange
interfaces compatible;

3.5. Consistency across
automation and
human roles and
procedures [5].

3.6. Qualification of
reused objects
(e.g., tools);

3.7. Change in allocation
of a requirement;

3.8. Other constraints;
and

3.9. Other derived
requirements. [6]

4. RAI.

Adapted from
Tasks 7.2:1(a, f,
and g), 7.2:2(b
and d), and 7.2:3(a
and b) in Table 1a
in [1] and from
Tasks 201 and 202
in [3].

T5. Analyze object115 for
(contributory) hazards. See the

Items above plus information
specific to object of analysis

1. Addition to hazard
log.

Adapted from
Tasks 7.1:5

115 Examples of objects: a work product from any phase in the development lifecycle, a work product for
the top-level digital safety system, some element in a lower level of integration, associated processes,
associated resources, and any other entity in the dependency paths (e.g., in the supply chain).

RIL-1101 Page 98

HA activity / task Input Output
Remarks and
References.

corresponding section and table
in RIL-1101. For a safety
system or its element, it
includes, for example, a search
for:
1. Single-point failure;
2. Common-mode

dependency; and
3. Common-cause

dependency.

(see Section C.1.2). 2. Change needed.
3. Examples:
3.1. As in T4;
3.2. Derived requirement

(on process) to prove
that a contributing
hazard cannot occur;
and

3.3. Derived requirement
or constraint on
object.

and 7.1:6 in
Table 1a in [1], from
Table 1b in [1], and
from [7].

4. Rejection or
Acceptance
(including
phase-advance
clearance).

5. Revision to HA plan
as needed.

6. RAI.
T6. Integrate analyses from
lower levels in the integration
hierarchy and contribution paths
up to the top-level analysis.

Items above plus information
needed about inter-object
dependencies for overall
system HA.

As in T5. Adapted from
Task 7.1:7 in
Table 1a in [1] and
from other portions
of [1].

T7. Analyze change proposal
(e.g., hazard-control proposal).

The change proposal,
including information on which
it depends (e.g., items listed
above).

As in T5. Abstracted from [1].

Referring to Sections C.1.2 and C.1.3, as the analysis identifies dependencies and the objects
on which the findings are dependent, relevant tasks in Table 21 are performed on each
identified object. When multiple inter-dependent objects are evolving concurrently, HA on these
objects may be performed concurrently, formulating the needed assumptions about the inter-
dependencies. These assumptions may be used as constraints on the inter-
dependencies,driving the development. In any case, these assumptions must be validated.

C.3.1 Evaluating the quality of HA output
The quality of the HA output depends on three major factors:

1. Competence—see Section C.4.
2. Quality of the input(s)—see Section C.5.
3. Technique—see Section C.6.

Evaluation of the HA plan is based on the degree to which the planned HA fulfills the following
objectives:

1. Identify all hazards, along with the constraints on the system and its environment, which
would enable identification of all hazards.

2. Identify all contributory hazards, along with the constraints on the system and its
environment, which would enable identification of all contributory hazards.

3. Identity the constraints needed to control the identified (contributory) hazards.

RIL-1101 Page 99

Consequently, evaluation of a selected HA technique is based on its ability to fulfill the
objectives stated above and on identifying the associated critical conditions, namely:

1. A specification of the competence required to apply the technique, so that the competence
of personnel using the technique to perform HA can be evaluated with consistency.

2. A specification of the information required to apply the technique, so that the object of
analysis can be evaluated with consistency.

Criteria to evaluate HA output:116

1. Completeness

1.1. Analysis for all known hazards and contributors, including lessons learned from prior
experience.

1.2. Demonstration of a systematic approach to HA, supported by evidence and reasoning.

2. Demonstrated consistency in the analysis of identified hazards and contributors.

3. Consistency with assumptions used.

4. Reference to inputs used.

C.3.2 Hazard identification and logging
Hazard identification, especially in the concept phase, requires extraordinary individual
capabilities, teamwork, and a conducive organizational culture (see Appendix F). If any analyst
or contributor to HA perceives a safety concern, a hazard, or a contributory hazard, the
individual is encouraged to express it. The expressed item is recorded in a “hazard log” without
immediate evaluation. Sometimes, a team engages in brainstorming to stimulate thought and
encourage expression. The “hazard log” [4] is a means of tracking an item from initial
expression to final disposition and closure. An entry in a hazard log is never deleted. All of the
related information may be in a single document or it may be distributed across a set of linked
databases; in any case, an analyst is able to make an entry readily.

Examples of related information include the following:

1. Information to identify the logged item:
1.1. Item identifier;
1.2. Descriptive title;
1.3. Originator;
1.4. Origination date;
1.5. Description; and
1.6. Perceived consequence/effect of inaction;

2. Information to track progress:
2.1. Action plan (from origination to closure);
2.2. Action assignee(s);
2.3. Status of progress in the action plan (e.g., Identified change needed to eliminate

hazard);
2.4. Basis to allow closure; for example:

2.4.1. Evaluation revealed that hazard control is already in place;

116 Criteria may be applied to the output in any iteration of any stage of the development lifecycle.

RIL-1101 Page 100

2.4.2. Evaluation resulted in recharacterization of the hazard (another entry in the
hazard log); and

2.4.3. Addition of a constraint or derived requirement in the system engineering
activities);

2.5. Date of closure; and
2.6. Name and signature authorizing closure.

Every addition or modification of a constraint or (derived) requirement is a
configuration-controlled item with associated change controls.

When the object is the overall system, the corresponding HA task is the exercise of the selected
HA technique (see Section C.6) on the information available about the object (see Section C.5).
Execution of this process might (a) assist in the evaluation of some other item in the hazard log
or (b) raise a new concern, which is then entered in the hazard log.

C.3.3 Evaluation of a logged hazard
Whereas published standards and handbooks (whose scope includes mixed-criticality systems)
suggest evaluation in terms of levels of severity and likelihood of occurrence, in the RIL-1101
context:

• The level of severity of the loss of a safety function is the highest-level and,
• For systemic causes, the analysis first seeks to correctly identify hazards that would

lead to the loss of a safety function and then pursues their elimination or avoidance, as
explained next.

In practice, a “quick” filtering or screening evaluation (e.g., see 2.4.1 and 2.4.2 in Section C.3.2)
is performed on each logged item before delving deeper. If an accurate dependency model is
available, the evaluation seeks to fit the logged item in the dependency model. The search for
the fit might reveal that the dependency model is inaccurate (requiring change) or that the
logged item is not a (contributory) hazard (leading to its closure). When the logged item is
matched to an object in the dependency network (i.e., its sequential order in the contributory
path is found), a corresponding HA task is formulated and sequenced in accordance with its
order in the contributory path.

As the evaluation of a logged item progresses, it might expose inadequacies or uncertainties in
the information about the object being analyzed. Figure 10 depicts a structure for reasoning
(adapted from [8]) about these uncertainties117. Suppose that the HA team is considering an
assertion that a result of the HA (e.g., formulation of a constraint on the object being analyzed)
will control the logged (contributory) hazard. Afterward, the team clarifies its reasoning through
discussion, evoking challenges to the assertion and rebuttals to the challenges. The discussion
might also reveal inconsistencies in the reasoning. In this manner, the team identifies factors
affecting the validity of the assertion. Qualifiers are associated with the assertion; for example:

1. Condition(s) under which the assertion is supported.
1.1. Uncertainties may be stated as assumptions for which the truth has to be validated.
1.2. Changes needed may be stated as constraints to be satisfied.

2. Degree or strength of the assertion: {Strong …. Weak}

117 Appendix F explains how the process is applied to cross-cultural (e.g., interdisciplinary or
inter-organizational) communication.

RIL-1101 Page 101

The results are recorded, showing how the assertion is supported by the evidence118, identifying
the inference rule to support the reasoning, and the technical basis for the rule (such as a
causal model).119

If the evaluation results in a conclusion that the logged item is not a hazard, it is recorded,
including the information depicted in Figure 10 (e.g., the reasoning, along with unresolved
dissenting positions, if any, in the form of conditions). A resolution process ensures that the
analysis, evaluation, resolution, and disposition of the issue are performed in a timely and
effective manner.

C.4 Effect of competence on quality of HA work products
When HA is performed on an early-stage concept, with little explicit information in the concept,
the competence factor, mentioned in Section C.3.1, is most dominant. For example, the analyst
has to elicit information about assumptions and dependencies through systematic enquiry
devised for the circumstances. Based on this information, the analyst would have to construct
an analyzable model of the dependencies (e.g., control structures, showing feedback paths,
interactions, and nested levels). These activities require extremely high competence. For an
approach to competence management, see [9], in which reference 7 is a technical competence
framework developed through wide consultation in the UK.

118 This is termed “grounds” in [8].
119 This is termed “backing” in [8].

identify

R depends on E

Theoretical or causal model

Inference rule

Evidence Assertion

Factors affecting validity

basis for

Qualifiers:
• Strength.
• Conditions.

Challenges.
Rebuttals.

Reasoning

used in

R E

A has Q
A Q

association

LEGEND

Figure 10: Structure of reasoning about the contribution to a hazard.

RIL-1101 Page 102

Competence is a critical factor [10]; for example, it is recognized in the following conditions to
reduce hazard spaces:

• H-0-2G1 and H-0-3G1 in Table 1
• H-culture-6G3 in Table 3
• H-SRE-1G{1, 2, and 3} in Table 10.

Competence to perform HA of an NPP digital safety system includes a complement of the
following capabilities (not necessarily in one person):

1. Proven ability to learn120, assimilating needed new knowledge in a scientifically sound
framework.

1.1. Education equivalent to a master’s degree level knowledge of safety-critical industrial
automation systems engineering.

1.2. Ability to recognize the knowledge needed and the limitations of one’s knowledge.

1.3. Ability to fill one’s knowledge gaps through self-study, supplemental training, and
consultation with experts.

2. Reasoning capability (see Figure 10);
2.1. Objectivity. (Also see item 9.)
2.2. Ability to abstract and generalize from one context and apply to another.
2.3. Ability to recognize fallacies in some chain of reasoning.

3. Self-driven update of professional knowledge through training. Examples could include the
following:
3.1. In the application domain:

3.1.1. How an NPP works (energy conversion from fuel to power on the grid);
3.1.2. Heat exchange;
3.1.3. Critical functional elements, processes, and process-state variables in an NPP;
3.1.4. Interdependencies of items in 3.1.3;
3.1.5. Associated (contributory) hazards; and
3.1.6. Study of operating experience (event reports and root-cause analysis reports).

3.2. In the industrial automation domain:
3.2.1. Elements for sensing, actuation, and computation;
3.2.2. Control logic;
3.2.3. Communication;
3.2.4. Software/firmware;
3.2.5. Power;
3.2.6. Associated (contributory) hazards; and
3.2.7. Study of operating experience (event reports and root-cause analysis reports).

3.3. Science and engineering of distributed systems, including:
3.3.1. Computation;

120 When the object being analyzed has some characteristic which the analyst has not encountered in
past experience, as is often the case in digital safety systems, the analyst is able to acquire the needed
knowledge with own initiative.

RIL-1101 Page 103

3.3.2. Communication; and
3.3.3. Storage or buffering.

3.4. Hazard and safety analysis; assurance methods and techniques for such systems.

4. Competence gained through experience in analysis of systems similar in criticality,
functionality, and configuration and evidenced through:
4.1. Good performance under the guidance of an expert in hazard analysis.
4.2. Good performance independently.

5. Strongly safety-conscious. See Sections F.1 and F.3 of Appendix F.

6. Communication skills in group activities (see Section F.4 of Appendix F), for example:
6.1. Ability to communicate effectively and objectively with stakeholders; Succinctness.
6.2. Ability to listen actively for understanding and learning from others.
6.3. Ability to elicit information needed.
6.4. Ability to explain one’s reasoning (see Figure 10) to others.
6.5. Ability to express and explain to others insights from deep knowledge.
6.6. Ability to develop collective communicative competence. See Section F.4.3 of

Appendix F.

7. Other interpersonal skills and characteristics that support teamwork (see Section F.4 of
Appendix F). For example:
7.1. Willingness to recognize and accept weaknesses in one’s own reasoning.
7.2. Willingness to explain own reasoning clearly, succinctly in the face of opposition.
7.3. Assistive rather than competitive behavior.
7.4. Ability to evoke minority viewpoints (in particular, concerns or reservations).
7.5. Ability to understand other team members’ frames of reference.
7.6. Ability to assimilate differences, neutralizing biases.
7.7. Ability to converge121 towards objectivity (see Figure 10). See “collective mindfulness” in

Appendix F.
7.8. Other constructive group-interaction skills.

8. Breadth and depth of competence.
8.1. Depth: The HA team includes individuals who have mastered the engineering

disciplines, technologies, products or components, processes, and dependencies
involved in each phase of the system-development lifecycle. (Maintaining this depth
might require different people from one development phase to the next.)

8.1.1. Knowledge of respective operating experience (what can go wrong).
8.1.2. Track record of learning from it (how to prevent what went wrong).

121 Often divergent positions arise from different frames of reference, assumptions, and contexts. A
competent analyst is able to recognize and articulate these underlying reasons, propose a unifying
framework, and formulate qualifiers on the assertions in dispute.

RIL-1101 Page 104

8.2. Breadth:122 Individuals are able to understand how their respective roles fit into the
overall HA, including the associated interdependencies.

8.2.1. Knowledge of the environment123 of the safety system and its development.
8.2.2. Experience in analysis of hazard groups such as those identified in RIL-1101.
8.2.3. Experience in deriving constraints to avoid or eliminate contributory hazards.
8.2.4. Experience commensurate with the functionality and configuration of the system.

9. The HA team has cultural diversity,124 and is able to use it to support safety.

C.5 Quality of information input to HA at each development phase
Table 22 provides a broad-brush characterization of the quality of the work products (in terms of
information richness) available for HA. For each major lifecycle-phase work product, Table 22
compares characteristics in common practice with the state of the practice (best-in-class
implementations) and the state of the art (leading-edge implementations, not yet scaled up) in
HA.

Table 22: Characterization of information richness in phase work products

Row ID
Work product

of lifecycle phase Common practice

Examples of the
state of the practice

(the best in the class)
Examples of the
state of the art

1 Requirements from
next higher level of
integration; e.g., from
NPP-level safety
analysis.

Textual narrative. No
configuration-controlled
vocabulary. “Flat list”
organization (i.e., no
explicit relationship
across requirements is
identified).

Restricted natural language
with defined vocabulary and
structure across elements of
a statement. [11]

Use-case scenarios
[12].

SpecTRM-RL [13] Framework for
specification &
analysis [14].

Requirements-engineering
support in Naval Research
Labs [15].
Requirements tables as
used for Darlington
NPP [16][17].
Models to support
mechanized reasoning such
as SysML [18].

2 Plans (such as a
safety plan, V&V
plan, and HA plan)

Contain a low level of
detail and are produced
relatively late in the
lifecycle.

V&V plan. [1]
Safety plan.
[19] through [21]

Integrated safety and
security plan.

3 Concept Combination of
(a) block diagram
without semantics on
the symbols and
(b) textual narrative

Models to support
mechanized reasoning [22].
(See note 1.)
SysML [18],
AADL [23], and
Extended EAST-ADL [24].

META [25].

4 Requirements of
digital safety system

See row 1. See row 1. See row 1.

122 Providing continuity to the HA team across lifecycle phases.
123 Also see Section 2.4.1.
124 See reference frames in item 7.5.; examples would be belief systems, values, thought processes,
paradigms, customs, conventions, and language.

RIL-1101 Page 105

Row ID
Work product

of lifecycle phase Common practice

Examples of the
state of the practice

(the best in the class)
Examples of the
state of the art

5 Architecture of digital
safety system

See row 3. See row 3. META [25].

6 Requirements for
software in digital
safety system

See row 1. [26][26][27] See row 1.

7 Architecture for
software in digital
safety system

See row 3. See row 3.
MASCOT [27] and
AADL [23].

META [25].

8 Detailed design of
software

For application logic:
Function block
diagram [28].
For platform software:
Combination of
(a) block diagram
without semantics on
the symbols and
(b) textual narrative.

SPARK [29][30]. META [25].
Refinement from
architectural
specifications.

9 Implementation of
software (code)

For platform software,
including
communication
protocols:
C programming
language and
processor-specific
assembly language

Concept of using safe
subset of an implementation
language: MISRA C [31][32]
and language for
programming FPGAs [33].

Auto-generation from
detailed design.

Notes:
1. The models should contain enough information to understand dependencies and propagation paths for

contributory hazards.

C.6 Hazard Analysis Techniques—useful extractions from survey
The selection and role of HA techniques (the third factor influencing the quality of an HA product
mentioned in Section C.3.1) will depend on the nature of the system to be analyzed and the
quality of the information contained in the various intermediate work products, as characterized
in Section C.5.

Table 23 summarizes some applicable techniques surveyed. As difficulties and limitations were
encountered in the earlier techniques (such as those in the first three rows of Table 23), these
techniques were extended, adapted and transformed into newer techniques (such as the ones
in the last three rows of Table 23); the references for the latter describe some of the difficulties
and limitations encountered in using the earlier techniques. The “Remark(s)” column identifies
concepts found useful and limitations that might confront an average practitioner. However, the
adaptations of HAZOP(S) devised to evolve newer techniques require extraordinary ingenuity;
utility of the adaptations depends heavily on the skills of the analysts.

When HA is applied to an early concept phase, it is called preliminary hazard analysis
(PHA) [34][35].

For a broad survey of HA techniques, see [5], [36], and [37], and for additional guidance,
see [38] through [42]. For a tutorial overview of HA in relation to safety-critical system
development, see [43]. References [5], [36] through [42], and [43] are not included in Table 23
for a technique for which technique-specific references are listed.

RIL-1101 Page 106

Table 23: Hazard analysis techniques relevant to NPP digital safety systems

HA technique
Reference(s) Remark(s)

Acronym Expanded name
HAZOP(S) Hazard and

Operability Studies
[44][45][46] Concept of using teamwork, aided by HAZOP process

expert.
Systematizing inquiry through keywords.
Systematizing understanding effects through
understanding the associated deviations.

FTA Fault-Tree Analysis [47][48][49] Representation and understanding of fault propagation
paths as branches of a tree.

DFMEA Design Failure Mode
and Effects Analysis

[50][51][52][53] Representation of the behavior of a failed hardware
component in order to understand its effect without
requiring knowledge of its internals.

FFMEA Functional Failure
Mode and Effects
Analysis

[52] Understanding the effect of the unwanted behavior of a
function of the system without requiring knowledge of
the system’s internals. Useful in the concept phase.
However, the term, failure, might limit the analyst’s
scope.

FuHA Functional Hazard
Analysis

[5] It can be started in the concept phase (performed as
preliminary hazard analysis) and allows for hazards
arising from reasons other than failures.

FHA Fault Hazard Analysis [36][39][42] Allows for hazardous conditions that arise even when
no single component fails.

CCA Cause Consequence
Analysis

[36][42] Concept of using causality model to understand fault
propagation paths. Analyst may encounter difficulty
when there is no single cause, but a number of
contributory factors.

W/IA What-If Analysis [40][42] More free-wheeling than FuHA.
CCFA Common-Cause

Failure Analysis
[36][39][42] Requires sufficient design definition to identify common

causes. The term, failure, might limit the analyst’s
scope. Analyst may encounter difficulty when there is
no single cause, but a number of contributory factors.

HACCP Hazard Analysis &
Critical Control Points

[54] Concept of focusing on critical process variables that
affect the outcome.

SHARD Software Hazard
Analysis and
Resolution

[45] Adaptation of HAZOP to software through customization
of the keywords.

FPTN/FPTC Fault Propagation and
Transformation
Network/Calculus

[55] Representation and analysis of fault propagation when
the faults are transformed during propagation and when
there are feedback paths, supporting mechanized
traversal and reasoning.

DFM Dynamic Flowgraph
Method

[56] through [58] Behavior modeling of the system in the finite state
machine paradigm facilitates or enables:
• Mathematical underpinning.
• Analysis of the system’s interactions with its

environment.
• Analysis of dynamic behavior across its elements.
• Mechanized traversal.
• Mechanized reasoning, especially if a directed cyclic

graph is used.
STPA System-Theoretic

Process Approach
[59] through [62] • Applicable at concept phase (without a finished

design).
• Applicable to understanding of systems of

organizational culture.

HAZOP(S) has been adapted to analyze software [45]; this adaptation has been extended to
data-flow-oriented software architecture [45], and, later, extended to systems with feedback and
systems in which the initial fault is transformed into other faults as it propagates [64][64]. These

RIL-1101 Page 107

concepts and principles have influenced the AADL [23] error annex, which supports analysis of
fault propagation.

Recently, a technique similar to the adaptations of HAZOP mentioned above, namely STPA,
has been demonstrated in NPP applications [59][60][61][62]. For a comparative experimental
study comparing STPA with five techniques, see [59][60].

If HA is performed on a state-of-the-practice or state-of-the-art work product, such as the ones
shown in Table 22, and if all behavior-influencing assumptions and dependencies were already
explicit in a system architecture model, the search for (contributory) hazards could be
automated [57], reducing the dependence on extremely high competence. However,
model-based approaches introduce their own contributory hazards; the analysis for these
contributors requires highly specialized competence.

See [64] for HA of device interfaces.

For an example of showing freedom from exceptions in software implementations (which are
contributing hazards), in addition to showing conformance to specifications, see [30].

Static analysis tools such as [30] identify data, information, and control flow dependencies in
software.

Hazard analysis can be integrated with development using a tool-supported, model-driven
engineering environment such as the AADL framework [65]. Its Error Model Annex can be used
to annotate the AADL model of an embedded system to support a FTA and FMEA [66][67].
Researchers are extending this environment to support STPA [68]. Also see Appendix K for
direction of advancement in modeling dependencies for hazard analysis.

C.7 References for Appendix C
[1] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard 1012-2012, “IEEE

Standard for System and Software Verification and Validation,” Piscataway, NJ,
March 29, 2012.

[2] U.S. Department of Defense (DoD), Joint Software System Safety Committee, “Software
System Safety Handbook: A Technical & Management Team Approach,” Washington, DC,
December 1999. Available at http://www.system-
safety.org/Documents/Software_System_Safety_Handbook.pdf.

[3] DoD, “Department of Defense Standard Practice: System Safety,” MIL-STD-882E,
Washington, DC, May 11, 2012, available at http://www.system-safety.org/Documents/MIL-
STD-882E.pdf.

[4] UK Ministry of Defence, “Hazard Log,” Procedure SMP 11, v. 2.2s, London, UK,
November 2007, available at
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP
11v22final.pdf.

[5] Society of Automotive Engineers (SAE), “Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment,” ARP4761,
Warrendale, PA, December 1, 1996.

[6] McDermid, J.A., “Safety Critical Software,” Chapter 506 of Blockley, R., and W. Shyy, eds.,
Encyclopedia of Aerospace Engineering, Hoboken, NJ: John Wiley & Sons,
December 2010 (added to the encyclopedia as an online publication on June 15, 2012,
accessible through DOI:10.1002/9780470686652.eae506).

http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf

RIL-1101 Page 108

[7] Hawkins, R.D., I. Habli, and T.P. Kelly, “The Principles of Software Safety Assurance,”
Proceedings of the 31st International System Safety Conference, Boston, MA, August 12–
16, 2013, International System Safety Society, Unionville, VA, 2013.

[8] Toulmin, S, The Uses of Argument, Cambridge, UK: Cambridge University Press, 1958.

[9] UK Health and Safety Executive (HSE), “Managing Competence for Safety-related
Systems,” available at http://www.hse.gov.uk/consult/condocs/competence.pdf.

[10] Chambers, L., “A Hazard Analysis of Human Factors in Safety-Critical Systems
Engineering,” Proceedings of the 10th Australian Workshop on Safety-Critical Systems and
Software, Vol. 55, 2006, Sydney, Australia, Australian Computer Society, Darlinghurst,
Australia, 2005.

[11] Hinchey, A.G., J.L. Rash, and C.A. Rouff, “Towards an automated development
methodology for dependable systems with application to sensor networks,” Proceedings of
the 24th International Performance, Computing, and Communications Conference,
Phoenix, AZ, April 7–9, 2005, IEEE, Piscataway, NJ, 2005, pp. 445–451.

[12] Allenby, K., and T. Kelly, “Deriving Safety Requirements Using Scenarios,” Proceedings of
the Fifth International Symposium on Requirements Engineering (ISCE),
Toronto, ON, August 27–31, 2001, IEEE, Piscataway, NJ, 2001, August 7, 2002, pp. 228–
235.

[13] Safeware Engineering Corporation, “Safeware Engineering Corporation: SpecTRM
Features,” available at http://www.safeware-eng.com/software safety
products/features.htm.

[14] Day, N.A., and J.A. Joyce, “A framework for multi-notation requirements specification and
analysis,” Proceedings of the Fourth International Conference on Requirements
Engineering, Schaumburg, IL, June 19–23, 2000, IEEE, Piscataway, NJ, 2000, available at
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumb
er=18574.

[15] Heitmeyer, C., J. Kirby, and B. Labaw, “The SCR method for Formally Specifying,
Verifying, and Validating Requirements: Tool Support,” Proceedings of the
19th International Conference on Software Engineering, Boston, MA, May 17–23, 1997,
Association for Computing Machinery (ACM) and IEEE, New York, NY, and
Piscataway, NJ, 1997, pp. 610–611, available at
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumb
er=13372.

[16] Parnas, D.L., and J. Madey, “Functional Documents for Computer Systems,” Science of
Computer Programming 25(1):41–61, October 1995.

[17] Galloway, A., et al., “On the Formal Development of Safety-Critical Software,” in Meyer, B.,
and J.C.P. Woodcock, eds., Verified Software: Theories, Tools, Experiments, First IFIP
TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland,
October 10–13, 2005, pp. 362–373.

[18] SysML.org, “SysML.org: SysML Open Source Specification Project,” available at
http://www.sysml.org/.

[19] International Organization for Standardization (ISO), “Road Vehicles—Functional safety—
Part 2: Management of functional safety,” ISO 26262-2:2011, Geneva, Switzerland, 2011.

[20] ISO, “Road Vehicles—Functional safety—Part 3: Concept phase,” ISO 26262-3:2011,
Geneva, Switzerland, 2011.

http://www.hse.gov.uk/consult/condocs/competence.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://www.sysml.org/

RIL-1101 Page 109

[21] ISO, “Road Vehicles—Functional safety—Part 4: Product development at the system
level,” ISO 26262-4:2011, Geneva, Switzerland, 2011.

[22] Despotou, G., R. Alexander, and T.P. Kelly, “Addressing Challenges of Hazard Analysis in
Systems of Systems,” Proceedings of the 3rd Annual IEEE International Systems
Conference, Vancouver, BC, March 23–26, 2009, IEEE, Piscataway, NJ, 2009.

[23] Carnegie-Mellon University, “AADL predictable model-based engineering,” available at
http://www.aadl.info/aadl/currentsite/.

[24] Mader, R., et al., “A Computer-Aided Approach to Preliminary Hazard Analysis for
Automotive Embedded Systems,” Proceedings of the 18th IEEE International Conference
and Workshops on Engineering of Computer-Based Systems, Las Vegas, NV,
April 27–29, 2011, IEEE, Piscataway, NJ, 2011, pp. 169-178.

[25] Kable Intelligence Limited, “Vanderbilt University to support META tools maturation for
DARPA AVM programme - Army Technology,” available at http://www.army-
technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-
avm-programme.

[26] Miller, S.P., and A.C. Tribble, “Extending the Four-Variable Model to Bridge the
System-Software Gap,” Proceedings of the 20th Digital Avionics System Conference,
Daytona Beach, FL, October 14–18, 2001, Volume 1, IEEE, Piscataway, NJ,
pp. 4E5/1–4E5/11.

[27] Simpson, H.R., “The Mascot method,” Software Engineering Journal 1(3):103–120,
May 1986.

[28] IEC, “Programmable controllers—Part 3: Programming languages” IEC 61131-3,
Edition 3.0, Geneva, Switzerland, 2013.

[29] Barnes, J.G.P., High Integrity Software: The SPARK Approach to Safety and Security,
Boston: Addison-Wesley, April 2003.

[30] AdaCore, “AdaCore: SPARK Pro,” available at https://www.adacore.com/sparkpro/.

[31] MISRA Ltd., “MISRA C: 2012,” available at
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx.

[32] LDRA, MISRA C / MISRA C++ Coding Standards Compliance see:
http://www.ldra.com/en/software-quality-test-tools/group/by-coding-standard/misra-c-c.

[33] Conmy, P.M., C. Pygott, and I. Bate, “VHDL Guidance for Safe and Certifiable FPGA
Design,” 5th International Conference on System Safety, Manchester, UK,
October 18–20, 2010, The Institution of Engineering and Technology,
Stevenage, UK, 2010, pp. 1–6.

[34] Gowen, L.D., J.S. Collofello, and F.W. Calliss, “Preliminary Hazard Analysis for
Safety-Critical Software Systems,” Proceedings of the Eleventh Annual International
Phoenix Conference on Computers and Communications, Scottsdale, AZ,
April 1–3, 1992, IEEE, Piscataway, NJ, 1992, pp. 501–508.

[35] Safeware Engineering Corporation, “Safeware Engineering Corporation: White
Papers - Preliminary Hazard Analysis,” available at http://www.safeware-eng.com/Safety
White Papers/Preliminary Hazard Analysis.htm.

[36] Ericson II, C.A., Hazard Analysis Techniques for System Safety, Hoboken, NJ: John
Wiley & Sons, August 2005.

http://www.aadl.info/aadl/currentsite/
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme
https://www.adacore.com/sparkpro/
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
http://www.ldra.com/en/software-quality-test-tools/group/by-coding-standard/misra-c-c
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm

RIL-1101 Page 110

[37] NRC, “Software Safety Hazard Analysis,” NUREG/CR-6430, February 1996, ADAMS
Public Legacy Library Accession No. 9602290270.

[38] National Aeronautics and Space Administration (NASA), “NASA Software Safety
Guidebook”, NASA-GB-8719.13, Washington, DC, March 31, 2004, available at
http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf.

[39] U.S. Air Force, “Air Force System Safety Handbook”, Kirtland AFB, NM, July 2000,
available at http://www.system-safety.org/Documents/AF_System-Safety-HNDBK.pdf.

[40] Maragakis, I., et al., “Guidance on Hazards Identification,” European Commercial Aviation
Safety Team, Cologne, Germany, March 2009, available at
http://www.easa.europa.eu/essi/documents/ECASTSMSWG-
GuidanceonHazardIdentification.pdf.

[41] Ippolito, L.M., and D.R. Wallace, “A Study on Hazard Analysis in High Integrity Software
Standards and Guidelines,” NISTIR 5589, National Institute of Standards and Technology,
Gaithersburg, MD, January 1995.

[42] “System Safety Analysis Handbook,” Second Edition, International System Safety Society,
Unionville, VA, 1999.

[43] Johnson, C.W., “Safety Critical Systems Development: Part II of the Notes,” University of
Glasgow, Glasgow, UK, October 2006, available at
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/slides/pt2.pdf.

[44] Chemical Industries Association, Chemical Industry Safety and Health Council (CISHEC),
“A Guide to Hazard and Operability Studies,” London, UK, 1977.

[45] Redmill, F., M. Chudleigh, and J. Catmur, System Safety: HAZOP and Software HAZOP,
Hoboken, NJ: John Wiley & Sons, June 1999.

[46] International Electrotechnical Commission (IEC), “Hazard and Operability Studies (HAZOP
Studies)—Application Guide,” IEC 61882:2001, Edition 1.0, Geneva, Switzerland, 2001.

[47] Vesely, W.E., et al, “Fault Tree Handbook,” NUREG-0492, January 1981, Agencywide
Documents Access and Management System (ADAMS) Accession No. ML12167A103.

[48] NASA, “Fault Tree Handbook with Aerospace Applications,” Version 1.1, Washington, DC,
August 2002, available at http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf.

[49] Park, G.-Y., et al., “Fault Tree Analysis of KNICS RPS Software,” Nuclear Engineering
Technology 40(5):397–408, August 2008.

[50] SAE, “Potential Failure Mode and Effects Analysis in Design (Design FMEA), Potential
Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process
FMEA), 2009” SAE J1739, Warrendale, PA, January 15, 2009.

[51] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and
Establishing a Critical Items List (CIL) (DRAFT),” Flight Assurance Procedure
(FAP)-322-209,” Washington, DC, November 2011, available at
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-
322-208-FMEA-Draft.pdf.

[52] Goddard, P.L., “Software FMEA Techniques,” Proceedings of the Annual Reliability and
Maintainability Symposium, Los Angeles, CA, January 24–27, 2000, IEEE,
Piscataway, NJ, 2000, pp. 118–123.

http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf
http://www.system-safety.org/Documents/AF_System-Safety-HNDBK.pdf
http://www.easa.europa.eu/essi/documents/ECASTSMSWG-GuidanceonHazardIdentification.pdf
http://www.easa.europa.eu/essi/documents/ECASTSMSWG-GuidanceonHazardIdentification.pdf
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/slides/pt2.pdf
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12167A103
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf

RIL-1101 Page 111

[53] Park, G.-Y. “Software FMEA Analysis for Safety Software,” Proceedings of the
17th International Conference on Nuclear Engineering, Brussels, Belgium,
July 12–16, 2009, Volume 5, ASME, New York, NY, 2009, pp. 831–837.

[54] U.S. Food and Drug Administration, “Hazard analysis & critical control points (HACCP) >
HACCP Principles & Application Guidelines,” available at
http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm.

[55] Fenelon P., et al., “Towards Integrated Safety Analysis and Design,” ACM Applied
Computing Review 2(1):21–32, March 1994.

[56] Garrett, C., and G. Apostolakis, “Context in the risk assessment of digital systems,” Risk
Analysis 19(1):23–32, February 1999.

[57] Garrett, C. and G. Apostolakis, “Automated hazard analysis of digital control systems,”
Reliability Engineering and System Safety 77(1):1-17, July 2002.

[58] NRC, “A Benchmark Implementation of Two Dynamic Methodologies for the Reliability
Modeling of Digital Instrumentation and Control Systems,” NUREG/CR-6985,
February 2009, ADAMS Accession No. ML090750687.

[59] Torok, R., and B. Geddes, “Systems Theoretic Process Analysis (STPA) Applied to a
Nuclear Power Plant Control System,” Electric Power Research Institute, Palo
Alto, CA, 2013, available at http://psas.scripts.mit.edu/home/wp-
content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf.

[60] Torok, R., “Hazard Analysis Methods for Digital Instrumentation and Control Systems,”
3002000509, Electric Power Research Institute, Palo Alto, CA,June 2013, publicly
available for fee at http://www.epri.com (non-publicly available at ADAMS Accession No.
ML13234A512)

[61] Song, Y., “Applying system-theoretic accident model and processes (STAMP) to hazard
analysis,” Master’s thesis, McMaster University, Hamilton, ON, available at
http://hdl.handle.net/11375/11867.

[62] Thomas, J., F.L. de Lemos, and N. Leveson, “Evaluating the Safety of Digital
Instrumentation and Control Systems in Nuclear Power Plants,” NRC-HQ-11-6-04-0060,
Massachusetts Institute of Technology, Cambridge, MA, November 2012, available at
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf.

[63] McDermid, J.A., et al., “Experience with the application of HAZOP to computer-based
systems,” COMPASS ’95: Proceedings of the Tenth Annual Conference on Computer
Assurance, June 25–29, 1995, Gaithersburg, MD, IEEE, Piscataway, NJ, pp. 37–48.

[64] Wallace, M., “Modular Architectural Representation and Analysis of Fault Propagation and
Transformation,” Electronic Notes in Theoretical Computer Science 141(3):53–71,
December 1, 2005.

[65] Feiler, P.H., D.P. Cluch, and J.J. Hudak, “The Architecture Analysis & Design Language
(AADL): An Introduction,” Technical Note CMU/SEI-2006-TN-011, Software Engineering
Institute, Pittsburgh, PA, February 2006, available at
http://www.sei.cmu.edu/reports/06tn011.pdf.

[66] Feiler, P., and A. Rugina, “Dependability Modeling with the Architecture Analysis & Design
Language (AADL),” CMU/SEI-2007-TN-043, Software Engineering Institute,
Pittsburgh, PA, July 2007, available at http://www.sei.cmu.edu/reports/07tn043.pdf.

http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML090750687
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://www.epri.com/search/Pages/results.aspx?k=Hazard%20Analysis%20Methods%20for%20Digital%20Instrumentation%20and%20Control%20Systems
https://adamsxt.nrc.gov/WorkplaceXT/getContent?objectStoreName=Main.__.Library&id=current&vsId=%7b715A96C5-3D28-48FD-AA7A-E56ECC9B552E%7d&objectType=document
http://hdl.handle.net/11375/11867
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.sei.cmu.edu/reports/06tn011.pdf
http://www.sei.cmu.edu/reports/07tn043.pdf

RIL-1101 Page 112

[67] Delange, J., and P. Feiler, “Supporting Safety Evaluation Process using AADL,”
Proceedings of the 7th Layered Assurance Workshop, New Orleans, LA,
December 9–10, 2013, Applied Computer Security Associates, Silver Spring, MD,
available at http://www.acsac.org/2013/workshops/law/2013-law-proceedings.pdf.

[68] Sam Procter and John Hatcliff, "An Architecturally-Integrated, Systems-Based Hazard
Analysis for Medical Applications", 12th ACM/IEEE International Conference on Formal
Methods and Models for Codesign, (MEMOCODE 2014), Lausanne, Switzerland, October
19-21, 2014.

http://www.acsac.org/2013/workshops/law/2013-law-proceedings.pdf

RIL-1101 Page 113

APPENDIX D: Refinement
Enabling verifiability earlier in the lifecycle through stepwise refinement

Author: Dr. Manfred Broy, Technische Universität München
http://www4.in.tum.de/~broy/
Integrative editing by Sushil Birla

D.1 Purpose and Scope
This appendix explains refinement (see Section D.2) as an enabler for the verifiability and, thus,
the assurability of a system (see item H-S-1.1G1.4 in Table 8).

The scope of this appendix is limited to the introduction of the kind of refinement needed to
support the purpose stated above (rather than covering refinement of all kinds found in
literature). For example, excluded from the scope is the case in which a specification is
expressed through an informal language and informal diagrams. Such a specification might be
ambiguous and its meaning might differ, depending on individual subjective judgment, as
illustrated in the following situation:

When a system125 is conceived, typically its specification is expressed in a language
natural to the conceiver (i.e., informal language). The specification may be incomplete
(i.e., not all the properties of the system are expressed, basing the economy of
expression on an implicit context), inconsistent, and ambiguous. Different individuals with
different mental models (e.g., of the conceiver’s implicit context and assumptions) might
have different interpretations, using their different mental models and judgment to fill in
the implicit or missing information in different ways. Transforming the informal description
into a complete, consistent, unambiguous126, correct set of requirements specification
may require engineering activities (e.g., elicitation; system-level hazard analysis;
validation) other than refinement [1].

This rigorous form of refinement reduces sources of uncertainty in the verification process. This
benefit is further discussed in Section D.3 and the corresponding required restrictions are
introduced in Section D.4.

D.2 Abstraction and refinement
Abstraction is a view of an object that focuses on the information relevant to a particular
purpose and ignores the remainder of the information [2].

Conversely, refinement is a detailed description that conforms to another (its abstraction),
perhaps in a somewhat different form [3].

Two specifications, S0 and S1, are in a refinement relation if everything described by S0 can
also be concluded by specification S1. This relation also ensures that S1 does not add any
behavior not included in S0 (i.e., no additional behavior is visible at the external interface).

Stepwise refinement decomposes the development process into a sequence of transformation
steps, as depicted in Figure 11, in which each successive step refines its input specification
([4] and [5]). Each transformation step entails some design decisions [6]. In other words, it
reduces the design space for the subsequent steps.

125 “System” here refers to the final product (i.e., the implementation installed in a plant).
126 Typically, a formal language is used to eliminate ambiguity and facilitate mechanized reasoning.

http://www4.in.tum.de/~broy/

RIL-1101 Page 114

Figure 11: Stepwise refinement: design decisions are made in small steps.

The concept of refinement, in its broadest sense, is applied to the specification of many aspects
of a system and many kinds of its elements, such as:

• Data element (see [7])
• Data structure
• Function
• Requirement
• System interface and interface behavior
• System architecture
• Hardware element
• Software element
• Human element
• System implementation
• Process
• Procedure (e.g., operating instructions)

Some simple examples of refinement are given in Table 24.
Table 24: Simple examples of refinement
Type of data
or
information Example of abstract level Example of refined level
Data Length. Length in SI units; value has a specified

precision level.
Data structure Sequence of a given length. Bounded one-dimensional array.
Structured
data

Sequence of last 10 measured values
of distance (length) in SI units.

One-dimensional array of length 10, to which
each element can be sent (written) or from
which each element can be retrieved (read) as
a value of length in SI units, but in which each
element is stored in a compact form.

Finished product

S0

S1

S2

S3

S4

S5

Sn
Progressively

reduced design space

Refinements

Design decisions (DD)

RIL-1101 Page 115

Type of data
or
information Example of abstract level Example of refined level
Structured
data

Location of point A in space with
respect to a given origin and some
reference frame.

Location and orientation of point A with
respect to a Cartesian reference coordinate
frame C0; all measurements are in SI units
and location is designated AC0.

Function Calculate the location of A with respect
to another Cartesian coordinate
frame C1 using IEEE 754, “IEEE
Standard for Floating-Point
Arithmetic”; the result is
designated AC1.

Calculate location of AC1 using matrix
representation127 and matrix functions that
conform to IEEE 754:
[AC1] = [AC0] - [C1C0].

D.3 Motivation for refinement as a constraint on system development
Refinement has supported powerful reasoning in software development; success in its use for
program construction leads to its usage in the development of safety-critical software-dependent
systems [1]. Refinement (in the rigorous sense as mentioned in Section D.4) enables
“verification by construction” that the original specification and initial constraints are satisfied [3].

This approach supports the concept that system properties can be verified analytically by
abstracting the essential information and leaving out all details about the system, which are not
needed but might render the analysis infeasible. The abstraction has to suit the analytical
purpose.

The enabling idea in the transformation from the abstract to the refined specification is that the
verification performed on the abstract level remains valid for the refined specification. This idea
can be applied to a sequence of refinement steps: Verification of properties successfully applied
to abstractions also holds for their refinements.

In the ideal state (enabling verification by construction), the final product would not have to be
tested against the initial specification. Key constraints required in developing a system to enable
this ideal are introduced next. To the extent that the ideal is not achieved through the
refinement-based analytical verification approach, residual uncertainties would require
complementary means of verification.

Stepwise refinement serves as a process for making a sequence of design decisions that rules
out unsafe choices or choices for which safety cannot be assured (e.g., because the
technological basis does not exist or the organization does not have the capability). In other
words, the design space is progressively reduced in a manner that progressively reduces the
hazard space also.

D.4 Mathematical underpinnings
Refinement supports correctness notions in a rigorous way when it is used with mathematical
underpinnings such as refinement calculi. Refinement calculi exist for practically all kinds of
formalisms and programming notations in computer science and for a large number of system
models.

In a refinement calculus for refinement steps, a “chunk” of design activity is decomposed into
elementary steps in such a way that the specification for the “chunk” is preserved [8].

127 In this case, the square brackets [] represent a matrix.

RIL-1101 Page 116

Refinement calculi introduce a formal refinement relation on the set of specifications as well as
rules to deduce and prove refinement types, forming a formal calculus. Moreover, refinement
calculi often define a number of transformation rules for system specifications that are applied to
produce refinements and that guarantee correctness by construction in the refinement process.

D.4.1 Refinement as logical implication
Logically, refinement corresponds to implication; the refined specification satisfies the original
specification.

If a refinement specification S0 is refined to specification S1, it connotes that specification S1
expresses more detailed information than specification S0; the logical property formulated by
specification S1 implies the logical property formulated by specification S0.

Formal specifications are logical predicates on systems and thus we can use the concept of
logical implication “⇐” to express a refinement relation:

 S0 ⇐ S1

Note that the arrow goes from S1 (the refinement) to S0 (the abstraction), expressing that each
property expressed by S0 is implied by the property expressed by S1.

The transformation from S0 to S1 is called a refinement step. Specification S1 is called a
refinement of specification S0. Specification S0 and specification S1 are said be in the
refinement relation.

D.4.2 Useful properties of the refinement relation
The refinement relation is a partial order on the semantics of specifications. The refinement
relation is transitive, reflexive, and antisymmetric; it defines a partial ordering on the (semantics
of) specifications of systems and their elements.

The transitivity property is illustrated as follows:

If specification S1 is a refinement of specification S0, expressed as

S0 ⇐ S1,

and S2 is a refinement of S1, expressed as

S1 ⇐ S2,

then we conclude that S2 is a refinement of S0:

S0 ⇐ S2.

D.4.3 Sequence of Refinement Steps
In developing a system through the stepwise refinement technique, simple steps of refinement
are put together into larger steps. To explain and comprehend the correctness of refinement
steps of the form

S ⇐ S',

the differences between specifications in adjacent steps must not be too large and ,ust be
comprehensible. For example, if

S ⇐ S'

is a large step,

RIL-1101 Page 117

then it is better to decompose it into a sequence of smaller intermediate steps:

S ⇐ S1,

S1 ⇐ S2,

…

Sk-1 ⇐ Sk,

Sk ⇐ S'.

These smaller steps guarantee that the larger step,

S ⇐ S',

is a correct refinement step based on the fact that the refinement relation is transitive.

D.4.4 Refinement and Decomposition
In a design step, a “hard-to-analyze” system, represented with its model M, is decomposed into
a number of “easier-to-analyze” (model) elements M1, M2, …, Mk.

D.4.4.1 Composing and Decomposing Interfaces

Composition is an operation on syntactically compatible system interfaces; let [I  O] denote
the set of interface behaviors; composition is defined by the operator

⊗ : [I1  O1] × [I2  O2] → [I  O]

The operator ⊗ induces a composition operation on specifications [9].

To express this step of decomposition formally we use the composition operator ⊗ for systems
in such a way that

 M = M1 ⊗ M2 ⊗ … ⊗ Mk

This equation expresses both that M is the result of composing the elements M1, M2, … Mk and
that M may be correctly decomposed into the elements M1, M2, … Mk.

Following this scheme, a specification S is decomposed into a number of specifications S1, S2,
… Sk of its system elements. Generalizing the composition to specifications we write

 S1 ⊗ S2 ⊗ … ⊗ Sk

for the specification of all the systems represented by M1 ⊗ M2 ⊗ … ⊗ Mk where the models of
the elements M1, M2, … Mk fulfill the specifications S1, S2, … Sk respectively.

Such a step of decomposition of a system specification into specifications of system elements is
called a refinement step if

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk

holds.

D.4.4.2 Compositionality of Refinement
Compositionality of refinement guarantees, for systems composed of a set of elements, that
refinements of the specifications of system elements guarantee refined system
specifications [1][10][11][12]. In the literature, compositionality of refinement is sometimes also
called modularity of refinement.

RIL-1101 Page 118

If we replace in a larger system an element that is required to fulfill specification A (and if for the
correctness of the system this is all that is required), then replacing the element by one fulfilling
specification B is correct and maintains the correctness, if such an element fulfilling
specification B also fulfills specification A. Formally, given a specification S, a decomposition
S1 ⊗ S2 ⊗ … ⊗ Sk which is also the refinement

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk,

and given refinements R1, R2 … Rk of the specification S1, S2 … Sk:

If the refinement relation is compositional for composition S, we can conclude that:

 S1 ⊗ S2 ⊗ … ⊗ Sk ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk

and, by transitivity of refinement,

 S ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk

Compositional refinement also captures the idea of compatibility (replaceability) of a system or
its elements. Consider a system given by a composition of elements, such that the system
design is correct as long as the elements satisfy their respective specifications. Compositional
refinement guarantees that the replacement of a specification of an element by its refinement
yields a refined design.

D.4.4.3 Example
Figure 12 depicts an example of architectural refinement. The top-level system is represented
by its model M; its behavior is represented by its specification S. The system model is
decomposed into modeling elements M1, M2, and M3 and their respective behaviors are
represented by S1, S2, and S3. If their combined behavior results in the behavior S and does not
produce any behavior not specified in S,

S ⇐ S1 ⊗ S2 ⊗ S3.

Note that the refined system contains more information, in this case about the architectural
design decomposing model M into three modeling elements M1, M2, and M3 specified by S1,
S2, and S3.

RIL-1101 Page 119

D.5 References for Appendix D
[1] Jackson, M., “Refinement, Problems and Structures” (extended abstract) in Proceedings of

Dagstuhl Seminar 09381: Refinement Based Methods for the Construction of Dependable
Systems, 13–18 September 2009, Saarbrücken, Germany: Schloss Dagstuhl – LZI, 2009,
available at http://mcs.open.ac.uk/mj665/Dagstuhl09ExtAbst.pdf.

[2] ISO, IEC, and IEEE, “Systems and software engineering—Vocabulary,”
ISO/IEC/IEEE 24765:2010, Piscataway, NJ, 2010.

[3] Woodcock, J., and J. Davies, Using Z: Specification, Refinement, and Proof, Upper Saddle
River, NJ: Prentice Hall, May 1996.

[4] Butler, M.J., “Stepwise refinement of communicating systems,” Science of Computer
Programming 27(2):139–173, September 1996.

[5] de Bakker, J.W., W.-P. de Roever, and G. Rozenberg, eds., Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness, Proceedings of the REX
Workshop, Mook, The Netherlands, May/June 1989, Berlin: Springer, 1990.

[6] Wirth, N., Program development by stepwise refinement,” Communications of the
ACM 14(4):221–227, April 1971.

[7] Morris, J.M., “Laws of data refinement,” Acta Informatica 26(4):287–308, February 1989.

[8] Morgan, C., Programming from Specifications, 2nd Edition, Upper Saddle River, NJ:
Prentice Hall, 1994.

[9] Broy, M., “A Theory for Requirements Specification and Architecture Design of
Multi-Functional Software Systems,” in Liu, Z., and H. Jifeng, eds., Mathematical
Frameworks for Component Software: Models for Analysis and Synthesis, Singapore:
World Scientific Publishing, 2006, pp. 119–154.

M

S

M1

S1

M2

S2

M3

S3

Figure 12: Example of architectural refinement through decomposition.

http://mcs.open.ac.uk/mj665/Dagstuhl09ExtAbst.pdf

RIL-1101 Page 120

[10] Broy, M., “Compositional refinement of interactive systems,”
Journal of the ACM 44(6):850–891, November 1997

[11] Broy, M., and K. Stølen, Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement, Berlin: Springer, April 2001.

[12] Broy, M., “A Logical Basis for Component-Oriented Software and Systems Engineering,”
The Computer Journal 53(10):1758–1782, February 2010.

RIL-1101 Page 121

APPENDIX E: Checklists to assist hazard recognition
This appendix is a collection of checklists assimilated from a variety of sources such as [1], [2],
and [3]. It is not an exhaustive coverage of hazard sources, categories, or groupings relevant to
a nuclear power plant’s (NPP’s) digital safety system. The intent is to stimulate thought from
different perspectives, leading to recognition of a hazard or a contributor to it.

E.1 Categories of hazard origination
Table 25 is adapted from Appendix D to National Aeronautics and Space Administration (NASA)
Reference Publication 1358 [1] and is organized by categories of hazard origination or source.
For each category, Table 25 identifies a variety of effects which might lead to loss.

Table 25: Some categories of hazard origination
Category of hazard origination Effect which might lead to loss
Acceleration/Deceleration/Gravity Inadvertent motion

Loose object translation
Impacts
Failing objects
Fragments/missiles
Sloshing liquids
Slip/trip
Falls

Chemical/Water Contamination System cross-connection
Leaks/spills
Vessel/pipe/conduit rupture
Backflow/siphon effect

Common Causes Utility outages
Moisture/humidity
Temperature extreme
Seismic disturbance/impact
Vibration
Flooding
Dust/dirt
Faulty calibration
Fire
Single-operator coupling
Location
Radiation
Wearing out
Maintenance error
Result of activity of organisms:
• Animals, such as:

o Vermin
o Varmints
o Mud daubers

• Trees
o Invasion of roots
o Congestion from leaves.

RIL-1101 Page 122

Category of hazard origination Effect which might lead to loss
Contingencies (Emergency Response by
System/Operators to “Unusual” Events)

“Hard” shutdown/failures
Freezing
Fire
Windstorm
Hailstorm
Utility outrages
Flooding
Earthquake
Snow/ice load

Control Systems Power outage
Interfaces (EMI/RFI)
Moisture
Sneak circuit
Sneak software
Lighting strike
Grounding failure
Inadvertent activation

Electrical Shock
Burns
Overheating
Ignition of combustibles
Inadvertent activation
Power outage
Distribution backfeed
Unsafe failure to operate
Explosion/electrical (electrostatic)
Explosion/electrical (arc)

Mechanical Sharp edges/points
Rotating equipment
Reciprocating equipment
Pinch points
Lifting weights
Stability/topping potential
Ejected parts/fragments
Crushing surfaces

Pneumatic/Hydraulic Pressure Overpressurization
Pipe/vessel/duct rupture
Implosion
Mislocated relief valve
Dynamic pressure loading
Relief pressure improperly set
Backflow
Crossflow
Hydraulic ram
Inadvertent release
Miscalibrated relief device
Blown objects
Pipe/hose whip
Blast

Temperature Extremes Heat source/sink
Hot/cold surface burns
Pressure evaluation
Confined gas/liquid
Elevated flammability
Elevated volatility
Elevated reactivity
Freezing
Humidity/moisture
Reduced reliability
Altered structural properties (e.g., embrittlement)

RIL-1101 Page 123

Category of hazard origination Effect which might lead to loss
Radiation (Ionizing) Alpha

Beta
Neutron
Gamma
X-Ray

Radiation (Non-Ionizing) Laser
Infrared
Microwave
Ultraviolet

Fire/Flammability—Presence of: Fuel
Ignition Source
Oxidizer
Propellant

Explosive (Initiators) Heat
Friction
Impact/shock
Vibration
Electrostatic discharge
Chemical contamination
Lightning
Welding (stray current/sparks)

Explosives (Effects) Mass fire
Blast overpressure
Thrown fragments
Seismic ground wave
Meteorological reinforcement

Explosive (Sensitizes) Heat/cold
Vibration
Impact/shock
Low humidity
Chemical contamination

Explosives (Conditions) Explosive propellant present
Explosive gas present
Explosive liquid present
Explosive vapor present
Explosive dust present

Leaks/Spills (Material Conditions) Liquid/cryogens
Gases/vapors
Dusts—irritating
Radiation sources
Flammable
Toxic
Reactive
Corrosive
Slippery
Odorous
Pathogenic
Asphyxiating
Flooding
Runoff
Vapor propagation

RIL-1101 Page 124

Category of hazard origination Effect which might lead to loss
Physiological (see “Ergonomic”) Temperature extremes

Nuisance dusts/odors
Barometric pressure extremes
Fatigue
Lifted weights
Noise
Vibration (Raynaud’s syndrome)
Mutagens
Asphyxiants
Allergens
Pathogens
Radiation (see “Radiation”)
Cryogens
Carcinogens
Teratogens
Toxins
Irritants

Human Factors (see “Ergonomic”) Operator error
Inadvertent operation
Failure to operate
Operation too early or late
Operation out of sequence
Right operation but wrong control
Operated too long
Operated too briefly

Ergonomic (see “Human Factors”) Fatigue
Inaccessibility
Nonexistent/inadequate “kill” switches
Glare
Inadequate control/readout differentiation
Inappropriate control/readout labeling
Faulty workstation design
Inadequate/improper illumination

Utility Outages:
• Unannounced; unscheduled
• Sudden
• Unexpected; unforeseen

Electricity
Steam
Heating/cooling
Ventilation
Air conditioning
Compressed air/gas
Lubricant drains/sumps
Fuel
Exhaust

Mission Phasing Transport
Delivery
Installation
Calibration
Checkout
Shakedown
Activation
Standard start
Emergency start
Normal operation
Load change
Coupling/uncoupling
Stressed operation
Standard shutdown
Shutdown emergency
Diagnosis/troubleshooting
Maintenance

RIL-1101 Page 125

E.2 Checklist for hazard sources
Following is a checklist from [2] of some general categories of hazard origination or source.
Note that some of the factors are similar to those in Table 25, but are organized differently.

1. Acceleration

2. Contamination

3. Corrosion

4. Chemical dissociation

5. Electrical
a. Shock
b. Thermal (corresponds to “Electrical—Overheating” in Table 25)
c. Inadvertent activation
d. Power-source failure (corresponds to “Electrical—Power outage” in Table 25)
e. Electromagnetic radiation

6. Explosion

7. Fire

8. Heat and temperature
a. High temperature
b. Low temperature
c. Temperature variations

9. Leakage

10. Moisture
a. High humidity
b. Low humidity

11. Oxidation

12. Pressure
a. High
b. Low
c. Rapid change

13. Radiation
a. Thermal
b. Electromagnetic
c. Ionizing
d. Ultraviolet

14. Chemical replacement

15. Shock (mechanical)

16. Stress concentrations

17. Stress reveals

18. Structural damage or failure

19. Toxicity

20. Vibration and noise

RIL-1101 Page 126

21. Weather and environment

Following is a checklist of some categories of energy sources for hazards, assimilated from a
variety of sources such as [2]:

1. Fuels
2. Propellants
3. Initiators
4. Explosive charges
5. Charged electrical capacitors
6. Storage batteries
7. Static electrical charges
8. Pressure containers
9. Spring-loaded devices
10. Suspension systems
11. Gas generators
12. Electrical generators
13. Radio-frequency sources
14. Radioactive energy sources
15. Failing objects
16. Catapulted objects
17. Heating devices
18. Pumps, blowers, and fans
19. Rotating machinery
20. Actuating devices
21. Nuclear

E.3 Checklist of hazard sources in semiconductor manufacturing
Table 26 is a set of examples from the semiconductor manufacturing industry [3], organized by
categories of sources of hazards and the corresponding potential loss or effect leading to
potential loss.
Table 26: Checklist of hazard sources in semiconductor manufacturing equipment
Categories of hazard sources Potential loss or effect which might lead to loss
Chemical Energy
Chemical disassociation or replacement of fuels,

oxidizers, explosives, organic materials, or compounds

Fire
Explosion
Non-explosive exothermic reaction
Material degradation
Toxic gas production
Corrosion fraction production

Contamination
Producing or introducing contaminants to surfaces,

orifices, filters, etc.

Clogging or blocking components
Deterioration of fluids
Degradation of performance sensors or operating

components
Electrical Energy
System or component potential energy release or failure

(includes shock, thermal, and static)

Electrocution/involuntary personnel reaction
Personnel burns
Ignition of combustibles
Equipment burnout
Inadvertent activation of equipment
Release of holding devices
Interruption of communications (facility interface)
Electrical short-circuiting

RIL-1101 Page 127

Categories of hazard sources Potential loss or effect which might lead to loss
Human Hazards
Hazards to perception (inadequate control/display

identification), dexterity (inaccessible control location),
life support, and error probability (inadequate data for
decisionmaking).

Hazardous conditions caused by position (hazardous

location/height), equipment (inadequate visual/audible
warnings or heavy lifting), or other elements that could
cause injury to personnel.

Personnel injury:
Skin abrasion, cuts, bruises, burns, falls, etc.
Muscle/bone damage
Sensory degradation or loss

Death

Equipment damage by improper operation/handling might
also occur

Kinetic/Mechanical Energy (Acceleration)
System/component linear or rotary motion.
Change in velocity or impact energy of vehicles,

components, or fluids.

Impact
Disintegration of rotating components
Displacement of parts or piping
Seating or unseating of valves or electrical contact
Detonation of shock-sensitive explosives
Disruption of metering equipment
Friction between moving surfaces

Material Deformation
Degradation of material because of an external catalyst

(e.g., corrosion, aging, embrittlement, fatigue, etc.).

Change in physical or chemical properties: corrosion,
aging, embrittlement, oxidation, etc.

Structural failure
Delamination of layered material
Breakdown of electrical insulation

Natural Environment
Conditions including lighting, wind, flood, temperature

extremes, pressure, gravity, humidity, etc.

Structural damage from wind
Equipment damage
Personnel injury

Pressure
Potential energy of a system or component (e.g., a fluid

system or air system), including high, low, or changing
pressure.

Blast/fragmentation from container overpressure rupture
Line/hose whipping
Container implosion
System leaks
Aero-embolism, bends, choking, or shock
Uncontrolled pressure changes in air/fluid systems

Radiation
Conditions involving electromagnetic, ionizing, thermal,

or ultraviolet radiation (including that from lasers and
optical fibers).

Uncontrolled initiation of safety control systems and
interlocks

Electronic equipment interference
Human tissue damage
Charring of organic material
Decomposition of chlorinated hydrocarbons into toxic

gases
Fuel ignition

Thermal
High, low, or changing temperature

Ignition of combustibles
Initiation of other reactions
Expansion/contraction of solids or fluids
Liquid compound stratification

Toxicants
Inhalation or ingestion of substances by personnel

Damage to, irritation of, or other effects on:
Respiratory system
Circulatory system
Organs of the body
Skin
Nervous system

Vibration/Sound
System/component-produced energy

Material failure
Pressure/shock-wave effects
Loosening of parts
Chattering of valves or contacts
Interference with verbal communications
Degradation or failure of displays

RIL-1101 Page 128

E.4 Hazard sources in the physical environment of a digital safety system
Disruption in or emissions from the environment or physical conditions in the environment might
degrade a safety function of the analyzed digital instrumentation and control (DI&C) system in
an NPP in any of these ways:

1. Water in unwanted space

2. Transfer of unwanted energy in various forms; for example:
2.1. Fire
2.2. Lightning
2.3. Heat
2.4. Light
2.5. Sound
2.6. Vibration
2.7. Radiation
2.8. Shock
2.9. Seismic event or effect
2.10. Tsunami
2.11. Flooding
2.12. Electrostatic discharge
2.13. Electromagnetic interference, causing spurious signal or signal change.
2.14. Electromagnetic radiation; for example:

2.14.1. Pulse
2.14.2. Sunspot or solar flare

3. Interruption of services (primary, secondary, or other forms of backup); for example:
3.1. Electric power supply

4. Disturbance in services, propagating to a disturbance in a main signal; for example:
4.1. Electric power supply
4.2. Service water [4]
4.3. Service air

5. Intrusions through breaches of isolation barriers; for example:
5.1. Cable penetration
5.2. Other duct penetration

6. Adverse conditions in temperature, pressure, or humidity/moisture; for example:
6.1. Too high
6.2. Too low
6.3. Rapid changes

7. Disturbance in incoming signals

8. Misbehaving signals (data or commands); for example:
8.1. Byzantine behavior
8.2. Behaving like a “babbling idiot” in a connected network

9. Deprivation of resources; for example:
9.1. Overloaded communication bus
9.2. Resource locked up by other “users” of those resources

Note: Items 8 and 9 are contributed through “logical” rather than physical sources in the
environment.

RIL-1101 Page 129

E.5 Digital safety system contribution to hazards affecting its environment
Emissions or outputs from or behavior of the DI&C system having an effect on its environment
might affect safety adversely in any of these ways:

1. Emission of energy in various forms; for example:
1.1. Heat
1.2. Light
1.3. Sound
1.4. Vibration
1.5. Electromagnetic radiation
1.6. Electrostatic discharge

2. Other unwanted, unplanned effluents; for example, those leading to
2.1. Toxicity
2.2. Inflammability

3. Output of signals (data or commands); for example:
3.1. Byzantine behavior
3.2. Behaving like a “babbling idiot” in a connected network

4. Excessive128 load or demand on resources; for example:
4.1. Electric power overload caused by a short circuit
4.2. Communication bus overload
4.3. Locking up resources to the exclusion of other “users” of those resources.

Note: Items 3, 4.2, and 4.3 are “logical” rather than physical contributory causes.

E.6 References for Appendix E
[1] Goldberg, B.E., et al., “System Engineering ‘Toolbox’ for Design-Oriented Engineers,”

NASA Reference Publication 1358, National Aeronautics and Space Administration,
Marshall Space Flight Center, AL, December 1994, available at
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950012517.pdf.

[2] Ericson II, C.A., Hazard Analysis Techniques for System Safety, Hoboken, NJ: John
Wiley & Sons, August 2005.

[3] International SEMATECH, Inc., “Hazards Analysis Guide: A Reference Manual for
Analyzing Safety Hazards on Semiconductor Manufacturing Equipment,” Technology
Transfer # 99113846A-ENG, Austin, TX, November 30, 1999, available at
http://www.sematech.org/docubase/document/3846aeng.pdf.

[4] NRO Office of Inspection & Enforcement, PNO-77-146_8-19-77, 146th Preliminary Notice
of Event or Occurance for 1977, dated August 19, 1977, Legacy (microfiche) ADAMS
Accession Number 9809170110, Microform Address A5119:285-A5119:285.

128 Excessive: Disruptive by exceeding limit declared or established in design.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950012517.pdf
http://www.sematech.org/docubase/document/3846aeng.pdf

RIL-1101 Page 130

APPENDIX F: Organizational Qualities To Support Safety
Author: Dr. Dorothy Andreas, Pepperdine University

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas

Integrative editing by Sushil Birla

This appendix draws on knowledge from the social sciences for the purpose of informing the
evaluation of hazard analysis of a digital safety system for a nuclear power plant (NPP).
Literature search in the social sciences did not yield any results specific to the context of
engineering critical systems such as a digital safety system for an NPP. In the absence of
context-specific research, this appendix assimilates129 information from broader fields of
applicable research in support of the premise that collective mindfulness (Section F.5) within the
organization is an essential factor for (a) reducing the hazard space in engineering a digital
safety system for an NPP and (b) conducting the associated hazard analysis. Most of the
scholarship is concerned with operations of technologically and organizationally intricate
systems (such as those in nuclear power plants, aircraft carriers, aviation, the petroleum
industry, occupational safety, and healthcare) ([1], [2], [3] through [5], [6], and [7]). The literature
refers to them as "high-reliability organizations" (HROs), where an HRO is defined as an
organization that operates (works with) hazardous (hazard-contributing) technologies without
having this operation lead to a catastrophe (loss of safety).

Swanson et al. [8], theorizing about the application of HRO principles (Section F.1) to design of
IT systems, is the only research that comes close to the context of RIL-1101 or the engineering
of digital safety systems. Similarly, in this appendix we map the knowledge from the social
sciences to the RIL-1101 context as follows:

Just as, in the operational environment, a “high-reliability130 organization” operates hazardous
technologies without leading to catastrophe [9], in the engineering environment, a high-quality
engineering organization (HQEO) develops and maintains technological systems without
entailing associated hazards.

The subsequent sections describe specific behaviors and processes to develop collective
mindfulness and discuss these in the context of accountability and standardization.
Organizations can measure all of the factors described in the subsequent sections and use this
information as one piece of evidence that a hazard analysis was performed using best
communication practices and sound principles from the social sciences.

HQEOs, just like HROs, work hard to address intricacies within technical systems using
processes that cultivate “collective mindfulness.” Collective mindfulness is a set of stable
cognitive processes that allow a group to develop sophisticated mental models that help to
“improve hazard identification and evaluation” ([9][10]).131 These organizations resist patterns of
habitual132 thinking and communicating that might lead them to miss safety-related information
(e.g., contributors to hazards). They intentionally strengthen their collective ability to pay
attention to new information to determine how the information provides insight into the

129 Assimilation includes mapping certain terms to the context of RIL-1101.
130 “Reliability” in this context does not have the same definition as used in fault-tolerant engineered
systems. To avoid the confusion, Appendix F uses the term “high-quality engineering organization.”
131 “Hazard identification and evaluation” is implicit in the expression, “risk detection, assessment, and
management” in the cited references.
132 Interpreting new information through an old reference frame—the traditional belief system.

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas

RIL-1101 Page 131

intricacies of the system and to help the organization avoid a hazardous condition133 and
prevent the consequential loss (e.g., degradation of a safety function). Organizational culture is
a contributing factor to individuals’ abilities to develop collective mindfulness. There are also
specific communication behaviors that enable organizations to develop collective mindfulness.

F.1 Five Principles
Following are the five organizing principles for high-quality134 processes ([6], [9], [10], and [11]):

1. Preoccupation with hazard135 identification: Treat every piece of information as a potential
symptom that something could be wrong with the system.

2. Reluctance to accept simplistic136 explanations and models: Always hold current mental
models in question with a persistent goal to create more complete and nuanced137
explanations and models of the system.

3. Sensitivity to operations, including situational awareness of the (current state of the) system:
Be able to notice anomalies,138 track them, and resolve them.

4. Commitment to resilience: Learn from mistakes, correcting one’s perceptions to represent
reality139 well enough to identify (contributory) hazards, in order to detect, contain, and
recover from mistakes.140

4.1. Be able to respond to unanticipated conditions (outside the boundary of the
organization’s deterministic processes) without compromising its safety goal.141

4.2. Be able to learn and grow from previous episodes of resilient action.

5. Deference to expertise: Cultivate diversity; delegate to (that is, empower) people who are
closer to the situation and can recognize more subtle contributors to a hazard in intricate
environments, and assimilate information from such people’s diverse perspectives.

An HQEO practices these principles in its everyday activities. However, there are ways to
measure an organization’s ability to follow these principles with surveys. A survey measure of
the five principles is in [9] and [10].

133 The reference uses the terms “error” and “failure” for this.
134 The references [6][9][10] use the term, “reliability”
135 The references [6][9][10] use the term “failure.”
136 In the RIL-1101 context, this means “not adequately representative of reality; missing (contributory)
hazards.”
137 In the RIL-1101 context, this means “reflecting subtle details that enable (contributory) hazard
identification.”
138 In the RIL-1101 context, this maps into “(contributory) hazards.”
139 The references [6][9][10] use the term “complicating” to imply a mental model that reflects reality more
accurately.
140 The references [6][9][10] use the terms “failure” and “error” for which “unrecognized hazard” is the
corresponding concept in RIL-1101. Its effect may be an “unwanted loss” for which, in the context of
organizational processes, the cause is traced to some mistake by some human.
141 The references [6][9][10] use the expression “absorb strain and preserve functioning despite presence
of adversity.”

RIL-1101 Page 132

F.2 Accountability, Standardization, and Adaptation
Many assumptions associated with safety management are based in traditional “scientific”
management, inheriting the following characteristics:

1. A standardization142 of work process, output, skills, and organizational norms (e.g., safety
culture).

2. A strict separation of planning143 and operations processes.

3. The use of “scientific” measurement to develop the standards and to detect flaws in the
system [24].

“Scientific” management is based on the premise that standardized processes in normal
operations control output and prevent mistakes [24][12]. This premise is related to master
premises that efficiency and predictability are desirable performance characteristics144 of
organizational processes [12][13]. In the context of safety management, it assumes that
managers can control employee behavior and that mishaps result from performance shortfalls,
which are the product of failing to control employee behavior (e.g., “mistakes”) [24][13]. Thos
assumption does not make adequate provision145 for unanticipated conditions and limits the
organization’s ability to recognize (contributory) hazards [24][9][10][13][14].

Likewise, the desire to establish a clear hierarchical “command and control” tree derives from
this assumption [12][15]. Decades of research about organizations, including the nuclear
industry, clearly document that the very nature of bureaucracy in organizations diffuses
accountability [12]. Hierarchical “command and control” is viewed as a strength, because
bureaucracy’s prescriptive “deterministic” processes enable accomplishment of organizational
tasks and goals without full dependence on an individual thinking for adjusting to
situation-specific unanticipated conditions [12]. Thus, individuals often base decisions on
assumptions underlying the “deterministic” processes that are not always made explicit [12].
However, as noted in H-culture-9 in Table 3, an overly rigid “command and control” organization
structure can increase the hazard space because the implicit assumptions and premises might
not hold. The top-down allocation of roles, responsibilities and performance metrics is based on
a deterministic process model, and does not make adequate provision for bottom-up
observation and feedback of real conditions and adaptation to them.

Organizational research asserts that the nature of bureaucracy creates a powerful force to
diffuse accountability throughout the organization [12][15]. In terms of ethics, some researchers
lament this organizational force and call for organizations, in general, to become mindful of this
tendency and counteract it whenever possible [12]. But rather than tracing all decisions through
individual accountability, they suggest that organizational members question assumptions and
premises that pervade the organizational culture [12]. The Toulmin model [16] introduced in
Section C.3.3 of Appendix C is one technique by which organizational members can question
premises and assumptions as they relate to evidence and claims about hazards or hazard
control. Conversations that seek to make these elements of arguments transparent can help
counteract the diffusion of accountability in bureaucracy. Of course, the intricacy of these
conversations and the amount of information that must be considered in hazard analysis can

142 Which includes top-down decomposition and allocation of responsibilities along the organizational
(command and control) structure, down to the individual.
143 Rigid hierarchical (top-down) plans limit local autonomy during execution or operation.
144 The references use the term “outcomes.”
145 For example, by establishing an organizational architecture for collective mindfulness.

RIL-1101 Page 133

make it difficult to keep a record of deliberations, decisions, and rationale.
Knowledge-management tools such as dialogue mapping can help organizations keep track of
deliberations, decisions, and rationale and to hyperlink the rationale to supporting information
and documents ([17] through [19]).

Even though the use of Toulmin’s argumentation model can help counteract diffusion of
authority in organizations, a caveat is in order in the context of complex, high-risk technology.
One of the main goals of Perrow’s Theory of Normal Accidents [20] is to raise awareness of the
faulty assumption that accidents result from a lapse of “scientific” management to control
employees—often referred to as “human error” [20][22]. In the context of complex, high-risk
technologies, it is worth considering his argument that the nature of complex technical systems
makes it extraordinarily difficult for standardization of organizational procedures to anticipate all
possible combinations of mistakes. An HQEO takes this issue seriously by developing collective
mindfulness in order to create requisite diversity and independence in the organizational system
to recognize the complexity of the technical system [3][9][10]. Requisite variety is the variation in
frames of reference and knowledge that makes the organization capable of recognizing and
addressing hazards [6]. In the case of many organizational mishaps, the paradox is that the
standardization of process that was designed to control mistakes in fact minimized the
organizations’ ability to develop collective mindfulness that would prevent the mishap [14][21]
[22] [23]. Alternately, HRO-relevant research in nuclear power plants, aircraft carriers, aviation,
and the petroleum industry consistently demonstrates that these organizations centralize and
standardize procedures while also building collective mindfulness about when to decentralize146
and adapt the procedures ([9], [10], and [12]). It is also important to note that too much
emphasis on the separation of planning and execution can lower the organization’s collective
mindfulness because it lowers sensitivity to the context and to the system [12][23] [24][25].

Thus, the desire to develop accountability and standardization within organizations must be
accomplished without minimizing the organizations’ ability to develop collective mindfulness that
allows them to recognize and prevent (contribution to) hazards. The subsequent sections
discuss the relationship between organizational culture and decisional premises (Section F.3),
the role of communication in developing collective mindfulness and following Toulmin’s model of
argumentation [16] (Section F.4), and the relationship between professional identification and
collective mindfulness and competence (Section F.5). Additionally, each section cites tools and
techniques for measuring the organizational and communication factors.

F.3 Organizational culture and decisional premises
The organization’s culture can create values and decision premises that guide individual
members’ cognition, communication, and processes in a manner that increases safety
[23][24][25][26][27][28]. Organizational culture is a complex concept, and because of its
complexity, it is difficult to define conceptually and difficult to measure [13][26][28][30]. Following
is the most commonly cited definition of organizational culture: “Organizational culture is
understood to be deeply rooted assumptions about human nature, human activities, and social
relationship shared by members of an organization and their expression in values, behavioral
patterns, and artifacts found within the organization” [25].

In the nuclear industry (and others), this concept is often called “safety culture,” defined by the
International Atomic Energy Agency (IAEA) as “that assembly of characteristics and attitudes in
organizations and individuals, which establishes that, as an overriding priority, nuclear plant
safety issues receive the attention warranted by their significance” [24]. Thus, one important

146 Delegate and distribute control; provide the autonomy (empower) to adapt, learn, and give feedback.

RIL-1101 Page 134

way to think about the role of organizational culture in the process of hazard analysis is that
members of the organization would be motivated by their value of safety to pay close attention
to hazard-related information.

In addition to establishing core values of an organization, the culture carries premises and
assumptions that often become the basis for decisions and evaluation of information in the
organization. It is the HRO’s established premises that allow it to have centralized and
standardized processes while at the same time allowing members interpretive flexibility to
recognize new information and adapt work processes accordingly ([1] and [23]).

The discipline of organizational culture derives from an anthropological tradition of studying
culture and organizations. It examines patterns of meaning, values, and frames of reference that
are shared among members of a community. It considers culture to be a complex whole of
knowledge, beliefs, ethics, and customs that is both created and lived within members of a
community. These cultural frames of reference are the lenses through which community
members interpret and evaluate information and behavior. Given the complexity and dynamic
nature of organizational culture, it is a very difficult phenomenon to measure. It is best evaluated
with a combination of qualitative and quantitative measures. There are many 3-part frameworks
to measure organizational culture. One framework suggests that it is a dynamic interrelationship
between individual characteristics, behavior, and the environment [31]. A similar model
suggests that individual behavior is influenced by the triad of organizational structure,
organizational processes, and organizational culture [27]. Qualitative measures might include
themes and patterns from a series of employee interviews, thematic analysis of focus groups,
detailed observation of the work environment, and audits of organizational documents. Another
approach uses rubrics to assess five levels of safety culture:

1. Organization does not care about safety,
2. Organization increases safety after an accident,
3. Organization uses systems and procedures to prevent hazards,
4. (Organization tries to anticipate safety problems, and
5. Normalization of safety values within the organization culture (akin to the principles of highly

reliable organizations).

Even though these measures of safety provide a sense of the values and interpretive frames
within a community, it is important to recognize that any measure only captures a moment in
time and does not tell the entire story.

There have been many efforts to develop quantitative measures of safety culture. These efforts
are generally considered to be measuring “safety climate.” Safety climate is an aggregation of
individual attitudes about safety. Thus, safety climate measured in surveys is a manifestation of
some aspect of the organizational safety culture. Even with this qualification of a survey
approach, many scholars question the validity of these surveys and suggest they are simply
measuring employee satisfaction with the organization and their supervisors [27]. Thus, reports
of survey measures should be evaluated carefully.

One approach to measuring safety culture suggests that the organization should carefully
consider what it really wants to measure [32].

1. One question inquires about the organizational culture as an attribute of the organization—
as something the organization has. Measurement methods appropriate to this question
include observation and audits.

2. A second question asks how the organizational culture impacts individual attitudes about
safety. Measurement methods for the second question include surveys and observation.

RIL-1101 Page 135

3. A third question inquires about the organizational climate as seen through the eyes of
employees, contractors, and external audiences. Measurement methods for the third
question include interviews and surveys. This approach suggests that technique of
measuring organizational safety culture should be based on the reason (purpose) for
measuring it.

See [25] for opinions about incident reporting, managers, prioritization of worker safety, work
procedures, work situation and stress, competence and training, communication and
cooperation, upper management, lines of responsibility, and perceptions of vocation (in this
case, seamanship).

See [32] for attitudes toward management commitment to safety, priority of safety,
communication, safety rules, supportive environment, involvement, personal priorities and need
for safety, personal appreciation of risk, and nature of work.

F.4 Communication for collective mindfulness
Quality of hazard analysis is affected by the quality of interaction among the involved people.
Good interaction quality depends on the following four factors:

1. Individual communication competence (Section F.4.1).
2. Participatory communication climate (Section F.4.2)
3. Cross-disciplinary or interdisciplinary competence (Section F.4.3)
4. Prevention of groupthink (Section F.4.4).

F.4.1 About Becoming a Competent Communicator
In general, the field of Communication Studies has given considerable thought to the qualities of
a competent communicator. Even though there are many lively debates about this topic, most
scholars accept the fundamental assumption that competent communicators effectively manage
self-image, relationships and tasks as follows [33]:

1. Present a competent and credible image of self.
2. Escalate, maintain, or terminate relationships.
3. Accomplish instrumental tasks.

The research about group communication and interdisciplinary communication indicates that
sole focus on tasks, ignoring self-image and relationships, increases the hazard space and
prevents organizations from developing collective mindfulness. Thus, the assumption that
competent communicators manage the triple {self-image; relationships; tasks} pervades the
subsequent discussions.

One commonly cited model of communication competence identifies six factors of
communication competence, measurable with a survey [33]:

1. Ability to adapt communication to the context.

2. Ability to stay cognitively involved in the conversation and to demonstrate involvement with
appropriate verbal and nonverbal cues.

3. Ability to manage a conversation effectively through turn-taking, questioning, intonation,
topic shifts, extensions etc.

4. Ability to understand a person’s perspective and emotions.

5. Ability to achieve the goal of the conversation.

RIL-1101 Page 136

6. Ability to uphold social norms and expectations for what counts as appropriate for a given
situation.

F.4.2 Participatory Communication Climate
A participatory communication climate at an organization contributes to the organization’s ability
to follow the five principles stated in Section F.1 and develop collective mindfulness. There are
four characteristics of participatory communication climate, measured with a survey published
in [34], that contribute to collective mindfulness:

1. Individuals have voice to express ideas and concerns.
2. The organization has an open communication climate.
3. Individuals have easy access to relevant information.
4. Individuals engage in continuous and ongoing learning.

F.4.3 Collective Communication Competence and Diversity
Communication among individuals from various professional and disciplinary backgrounds has
the potential to increase intellectual diversity and this is a factor that contributes to collective
mindfulness [9][10][34]. Unfortunately, interdisciplinary communication is also challenging.

In particular, the following communication activities are contribute to hazardous conditions,
because they limit organizations’ ability to develop interdisciplinary competence [35]:

1. Expressions of negative humor and sarcasm.
2. Debating with team members about whose expertise is more important and jockeying for

control and power.
3. Expressing boredom through verbal and nonverbal messages.

These behaviors might seem minutiae, but in excess might limit an organization’s ability to seek
and use intellectual diversity for recognizing hazards.

Teams can increase intellectual diversity by developing collective competence in
interdisciplinary group communication. The following behaviors increase collective
communication competence [35]:

1. Building trusting relationships.

2. Reflectively talking about the task when members spend time coordinating their
understanding of what to do (this is related to Steps #1 and #2 of group conversational
quality in Section F.4.4).

3. Negotiating meaning by discussing different uses of language that arise from disciplinary
and professional differences (this would be especially important as nuclear engineers
collaborate with software engineers).

4. Demonstrating presence through active listening behaviors.

5. Informal communication, such as shared humor, that builds positive relationships and a
sense of shared meaning.

Through these behaviors, individuals can manage the triple {self-image; relationships; tasks}
mentioned in Section F.4.1.

RIL-1101 Page 137

F.4.4 Conversation Quality and Deference to Expertise
Groupthink is an organizational phenomenon that leads to poor-quality decisions and increases
the hazard space [36]. Groupthink occurs when group members feel an undesirably strong
sense of cohesiveness.

F.4.4.1 Characteristics of Groupthink
Following are some of the identified characteristics of groupthink [36][37]:

1. Critical thinking is not encouraged or rewarded.
2. Members of the group are so cohesive that they believe they can do no wrong.
3. Members are too focused on justifying their own actions.
4. Members often believe that they have reached a true consensus.
5. Members are too concerned with reinforcing the leader’s beliefs and attitudes.

Groupthink is a contributory hazard because it limits the organization’s ability to develop
collective mindfulness. In the context of hazard analysis of digital safety systems, it can diminish
the organization’s ability to be deferent to expertise across the many relevant contexts.

F.4.4.2 Countermeasures to Prevent Groupthink
In order to counter the possibility of groupthink, groups can develop quality conversations that
lead to high-quality decisions (or, in the context of RIL-1101, high-quality hazard analysis of
digital instrumentation and controls).

Five conversational acts147 that can improve conversational quality for hazard analysis have
been identified ([38] through [40]):

1. Carefully gather information to identify a hazard and analyze the information in a way that
results in a clearly defined hazard.

2. Set criteria for the quality of the decision about this hazard. Examples might include:

2.1. Make premises and assumptions explicit [41];

2.2. Prevent the diffusion of accountability in the organization (see Section F.2); and

2.3. Measure the group’s conversational quality using the Competent Group Communicator
Scale [37].

3. Identify factors to reduce the hazard space and seek a range of constraint alternatives.

4. Critically evaluate the identified hazard (from act 1) and the alternatives to reduce the
hazard space (from act 3).

5. Select the best course of action to pursue in order to avoid, eliminate, or otherwise control
the hazard; remain open to new information; and be willing to change course as needed.

F.5 Collective mindfulness and competence
Survey measures of collective mindfulness are in [34] and [42].

147 These five conversational acts have been modified to adjust them to the context of hazard analysis. In
the research, the five acts contribute to a high-quality decision: (1) define the problem, (2) set criteria for a
solution, (3) propose possible solutions, (4) critically evaluate proposals, and (5) select the best proposal.

RIL-1101 Page 138

F.6 References for Appendix F
[1] Bierly III, P.E., and J.-C. Spender, “Culture and High Reliability Organizations: The Case of

the Nuclear Submarine,” Journal of Management 21(4):639–656, August 1995.
[2] Hofmann, D.A., R. Jacobs, and F. Landy, “High Reliability Process Industries: Individual,

Micro, and Macro Organizational Influences on Safety Performance,” Journal of Safety
Research 26(3):131–149, Autumn 1995.

[3] Rijpma, J.A., “Complexity, Tight-Coupling and Reliability: Connecting Normal Accidents
Theory and High Reliability Theory,” Journal of Contingencies and Crisis
Management 5(1):15–23, March 1997.

[4] Roberts, K.H., D.M. Rousseau, and T.R. La Porte, “The Culture of High Reliability:
Quantitative and Qualitative Assessment Aboard Nuclear-Powered Aircraft Carriers,” The
Journal of High Technology Management Research 5(1):141–161, Spring 1994.

[5] Skjerve, A.B., “The Use of Mindful Safety Practices at Norwegian Petroleum Installations,”
Safety Science 46(6):1002–1015, July 2008.

[6] Weick, K.E., K.M. Sutcliffe, and D. Obstfeld, “Organizing for High Reliability: Processes of
Collective Mindfulness,” in Boin, A., ed., Crisis Management, Volume III, Thousand
Oaks, CA: Sage, 2008, pp. 31–66.

[7] Schulman, P.R., “The Negotiated Order of Organizational Reliability,” Administration &
Society 25(3):353–372, November 1993.

[8] Swanson, E.B., and N.C. Ramiller, “Innovating Mindfully with Information Technology,” MIS
Quarterly 28(4):553–583, December 2004.

[9] Weick, K.E., and K.M. Sutcliffe, Managing the Unexpected: Resilient Performance in an
Age of Uncertainty, Hoboken, NJ: Jossey-Bass, 2007.

[10] Weick, K.E., and K.H. Roberts, “Collective Mind in Organizations: Heedful Interrelating on
Flight Decks,” Administrative Science Quarterly 38(3):357–381, September 1993.

[11] Sanders, S., “A Failure of Imagination?” entry at “Wit and Wisdom of an Engineer,”
available at http://witandwisdomofanengineer.blogspot.com/2011/05/failure-of-
imagination.html.

[12] Cheney, G., et al., Organizational Communication in an Age of Globalization: Issues,
Reflections, Practices, 2nd edition, Long Grove, IL: Waveland Press, June 2010.

[13] Reiman, T., and P. Oedewald, “Assessment of Complex Sociotechnical
Systems - Theoretical Issues Concerning the Use of Organizational Culture and
Organizational Core Task Concepts,” Safety Science 45(7):745–768, August 2007.

[14] Pidgeon, N., and M. O’Leary, “Man-Made Disasters: Why Technology and Organizations
(Sometimes) Fail,” Safety Science 34(1–3):15–30, February 2000.

[15] Simon, H.A., Administrative Behavior: A Study of Decision-Making Processes in
Administrative Organizations, 4th edition, New York: Free Press, 1997.

[16] Toulmin, S., The Uses of Argument, Cambridge, UK: Cambridge University Press, 1958.
[17] Bracewell, R.H., et al., “Capturing Design Rationale,” Computer-Aided Design 41(3):173–

186, March 2009.
[18] Eng, N.L., et al., “More Space to Think: Eight Years of Visual Support for Rationale

Capture, Creativity and Knowledge Management in Aerospace Engineering,” Proceedings

http://witandwisdomofanengineer.blogspot.com/2011/05/failure-of-imagination.html
http://witandwisdomofanengineer.blogspot.com/2011/05/failure-of-imagination.html

RIL-1101 Page 139

of the 23rd International Conference on Design Theory and Methodology and the
16th Design for Manufacturing and the Life Cycle Conference, Washington, DC,
August 28–31 2011, ASME, New York, NY, pp. 225–235.

[19] Conklin, J., Dialogue Mapping: Building Shared Understanding of Wicked Problems,
Hoboken, NJ: John Wiley & Sons, January 2006.

[20] Perrow, C., Normal Accidents: Living with High-Risk Technologies, Updated Edition,
Princeton, NJ: Princeton University Press, September 1999.

[21] Vaughn, D., The Challenger Launch Decision: Risky Technology, Culture, and Deviance at
NASA, Chicago, IL: University of Chicago Press, January 1996.

[22] Perin, C., Shouldering Risks: The Culture of Control in the Nuclear Power Industry,
Princeton, NJ: Princeton University Press, October 2006.

[23] Pidgeon, N., “The Limits to Safety ? Culture, Politics, Learning and Man-Made Disasters,”
Journal of Contingencies and Crisis Management 5(1):1–14, March 1997.

[24] International Nuclear Safety Advisory Group (INSAG), “Basic Safety Principles for Nuclear
Power Plants,” 75-INSAG-3, International Atomic Energy Agency, Vienna, Austria, 1988.

[25] Antonsen, S., “The Relationship between Culture and Safety on Offshore Supply Vessels,”
Safety Science 47(8):1118–1128, October 2009.

[26] Choudhry, R.M., D. Fang, and S. Mohamed, “The Nature of Safety Culture: A Survey of
the State-of-the-Art,” Safety Science 45(10):–, 2007.

[27] Schein, E.H., Organizational Culture and Leadership, 4th Edition, Hoboken, NJ:
Jossey-Bass, August 2010.

[28] Weick, K.E., “Organizational Culture as a Source of High Reliability,” California
Management Review 29(2):112–127, Winter 1987.

[29] Guldenmund, F.W., “The Use of Questionnaires in Safety Culture
Research - An Evaluation,” Safety Science 45(6):723–743, July 2007.

[30] Pidgeon, N., “Safety Culture: Key Theoretical Issues,” Work & Stress 12(3):202–216, July–
September 1998.

[31] Geller, E.S., “Ten Principles for Achieving a Total Safety Culture,” Professional Safety,
September 1994, pp. 18–24.

[32] Cox, S.J., and A.J.T. Cheyne, “Assessing Safety Culture in Offshore Environments,” Safety
Science 34(1–3):111–129, February 2000.

[33] Canary, D.J., M.J. Cody, and V.L. Manusov, Interpersonal Communication: A Goals-Based
Approach, Third Edition, Boston: Bedford/St. Martin’s, January 2003.

[34] Novak, J.M., and T.L. Sellnow, “Reducing Organizational Risk through Participatory
Communication,” Journal of Applied Communication Research 37(4):349–373, 2009.

[35] Thompson, J.L., “Building Collective Communication Competence in Interdisciplinary
Research Teams,” Journal of Applied Communication Research 37(3):278–297, 2009.

[36] Janis, I.L., Crucial Decisions: Leadership in Policymaking and Crisis Management, New
York: The Free Press, 1989.

[37] Beebe, S.A., and J.T. Masterson, Communicating in Small Groups: Principles and
Practices, 8th edition, Boston: Allyn & Bacon, 2004.

RIL-1101 Page 140

[38] Orlitzky, M., and R.Y. Hirokawa, “To Err is Human, to Correct for It Divine: A Meta-Analysis
of Research Testing the Functional Theory of Group Decision-Making Effectiveness,”
Small Group Research 32(3):313–341, June 2001.

[39] Gouran, D.S., and R.Y. Hirokawa, “Effective Decision Making and Problem Solving:
A Functional Perspective,” in Hirokawa, R. Y., et al., eds., Small Group Communication:
Theory and Practice: An Anthology, 8th edition, Los Angeles: Roxbury, 2003.

[40] Wittenbaum, G.M., et al., “The Functional Perspective as a Lens for Understanding
Groups,” Small Group Research 35(1):17–43, February 2004.

[41] Antonsen, S., K. Skarholt, and A.J. Ringstad, “The Role of Standardization in Safety
Management - A Case Study of a Major Oil & Gas Company,” Safety
Science 50(10):2001–2009, December 2012.

[42] Barrett, M.S., et al., “Validating the High Reliability Organization Perception Scale,”
Communication Research Reports 23(2):111–118, June 2006.

RIL-1101 Page 141

APPENDIX G: An Example Case Study
This case study illustrates that much can be learned from a single event to prevent or avoid a
broader range of mishaps. When a specific mishap is examined for its causes (contributory
hazards), pre-existing knowledge of cause-and-effect relationships can be used as the basis for
generalizing from the specific contributory occurrences to more general contributory hazards.

The concept of generalization has been used in a systems engineering process in which a set of
scenarios are used (in addition to general requirements) to imply and represent many similar
situations, conditions, and cases; these scenarios drive the engineering of the system. The
resulting system not only satisfies the requirements explicit in the scenarios, but also many
other implied scenarios.

Experts [1] in such generalization have identified two types of reasoning processes, “abduction”
and “induction.”

G.1 Ft. Calhoun Event
The following information is based on [2][3][4].

The plant was shut down on April 9, 2011, for a refueling outage. The outage was extended
because of flooding along the Missouri River. Then an electrical fire on June 7, 2011, led to the
declaration of an “Alert” and caused further restart complications.

The fire resulted in the loss of spent fuel pool cooling capability for a brief time and caused
significant unexpected system interactions.

The Alert caused by the (electrical circuit) breaker fire resulted from inadequate design [4],
which resulted from inadequate requirements specification. Figure 13 illustrates the dependency
relationships. The bottom two blocks illustrate a generalization from the specific occurrence at
Ft. Calhoun. In this example, the deficiency in the component interface specification was not
identified during validation or hazard analysis activities.

Hazard analysis activities are relied on to demonstrate that key systems will be able to perform
their safety functions under a variety of challenging accident conditions such as earthquakes,
loss-of-coolant accidents, high radiation fields, seismic events, etc. The hazardous behavior is
generalized and shown in the block in the upper right corner of Figure 13.

To extend the generalization, among the known causes of “deficient designs,” the leading cause
is “deficient requirements.” In the context of RIL-1101, “deficient requirements including
constraints” result from inadequate HA; for example:

• Inadequate understanding of contributory hazards, which were being implicitly avoided
through the silver plated interface between the bus bar and the original circuit breaker.

• Inadequate formulation of requirements to avoid or prevent such contributory hazards.

• Inadequate validation of the HA and the resulting requirements.

RIL-1101 Page 142

“The power of generalizing ideas, of drawing comprehensive conclusions from individual
observations, is the only acquirement, for an immortal being, that really deserves the name of
knowledge.” Mary Wollstonecraft (1759–1797), British feminist, A Vindication of the Rights of
Woman, Chapter 4, 1792. [5]

G.2 References for Appendix G
[1] Flach, P.A., and A.M. Hadjiantonis, eds., Abduction and Induction: Essays on Their

Relation and Integration, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000.

[2] U.S. Nuclear Regulatory Commission, NRC, “Fort Calhoun Station - NRC Followup
Inspection - Inspection Report 05000285/201007; Preliminary Substantial Finding,”
IR 05000285-10-007, July 15, 2010, Agencywide Documents Access and Management
System (ADAMS) Accession No. ML101970547.

[3] Omaha Public Power District, “Inadequate Flooding Protection Due to Ineffective
Oversight,” Licensee Event Report 05000285 2011-003-1, May 1, 2011, ADAMS
Accession No. ML111370123.

[4] Omaha Public Power District, “Fire in Safety Related 480 Volt Electrical Bus,” Licensee
Event Report 05000285 2011-008-1, October 27, 2011, ADAMS Accession
No. ML113010208.

[5] Dictionary.com, “The power of generalizing ideas of, Mary Wollstonecraft,” available at
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensiv
e.

Flood Fire

Circuit breaker (CB) fault

CB: inadequate design

CB: deficient interface specification

Significant unexpected
system interactions

Figure 13: Example from event on June 7, 2011, at Ft Calhoun nuclear power plant (NPP).

https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML101970547
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML111370123
https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML113010208
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive

RIL-1101 Page 143

APPENDIX H: Examples of NPP Modes

Following are examples of modes of a nuclear power plant (NPP) across its lifecycle to serve as
reminder that each might present different kinds of hazardous conditions:

1. Construction

2. Preoperational

3. Startup testing

4. Commissioning

5. Operational

6. Testing or maintenance being performed
6.1. Setpoint adjustment
6.2. Instrument calibration
6.3. Change (switching) of calibration parameters (in common position (CP) 2.1.3.2.5 in [1])

7. Refueling or open vessel (for maintenance)
7.1. Refueling or open vessel—all or some fuel inside the core
7.2. Refueling or open vessel—all fuel outside the core

8. Decommissioning

Following are examples of modes of an operational nuclear power plant (NPP) to serve as
reminder that each might present different kinds of hazardous conditions:

1. Start-up

2. On Power
2.1. Raising power
2.2. Full allowable power
2.3. Reducing power
2.4. Reduced power (including zero power)

3. Hot Shutdown (reactor subcritical)
3.1. Hot standby (coolant at normal operating temperature)
3.2. Hot shutdown (coolant below normal operating temperature)

4. Cold Shutdown (reactor subcritical and coolant temperature < 93°C)
4.1. Cold shutdown with closed reactor vessel
4.2. Mid-loop operation – applies to pressurized-water reactor (PWR) only

Reference
[1] Task Force for Safety Critical Software, “Licensing of Safety Critical Software for Nuclear

Reactors: Common Position of Seven European Nuclear Regulators and Authorised
Technical Support Organizations,” Revision 2013, available at
http://www.hse.gov.uk/nuclear/software.pdf.

http://www.hse.gov.uk/nuclear/software.pdf

RIL-1101 Page 144

APPENDIX I: Evaluation of Timing Analysis
Author: Dr. John Stankovic, University of Virginia

http://www.cs.virginia.edu/people/faculty/stankovic.html
Integrative editing by Sushil Birla

This appendix summarizes the state of the art in timing analysis. Timing analysis is used in
design to evaluate its suitability to support timing and related constraints. Timing is reanalyzed
to confirm satisfaction of these constraints after implementation using actual execution times
and delays.

A design description should include the approach being taken to guarantee timing behavior with
accompanying timing schedules and resource assignments that logically guarantee timing. An
evaluator can expect to see different approaches. However, it is very unlikely that there exists
an exact case study or exact match between the principles described below and the system
under evaluation. It will be necessary for the evaluator to apply significant knowledge and
expertise in real-time theory and practice.

In performing timing analysis, there are (at least) four overarching approaches that could be
presented by the developer –four are listed below and are elaborated in the subsequent
sections.

1. First (Sections I.1 and I.2) is a complete and explicit layout of all tasks on timelines that
represent a deterministic execution time for everything and in such a manner as to meet all
timing, ordering, and resource constraints. This would include identifying the processing
elements (central processing units (CPUs), field-programmable gate arrays (FPGAs), etc.),
the assignment of tasks to each processing element, and message slots on buses and their
purpose.

2. Another proposed approach might be the use of fixed-priority scheduling. This means that
the operating system on each processing element runs tasks according to fixed priorities as
assigned by the developers to guarantee timing. This approach should be supported by
fixed-priority mathematical analysis (Section I.3.1).

3. Another approach might be to use dynamic priorities and apply their associated analysis
(Section I.3.2). This approach is less deterministic, but has advantages in many situations
and can be used as an offline analysis to guarantee timing.

4. A fourth approach is use of FPGAs (Section I.4). In all the design approaches, realistic
estimated times should be identified. Accounting for redundancy and fault-tolerance
techniques in the design must be included.

I.1 Timing analysis by hand
The developer, using a manual approach, may present a set of timelines with all tasks assigned
deterministically. How they created these time lines (possibly by hand) might not be known and
is generally very complex. For the evaluator, once the deterministic timelines are given, it is
much simpler to check (one by one) whether the set of assignments and timelines meets all the
timing, ordering, and resource constraints. This approach is sometimes used for small and
simple subsystems. It is not recommended for complex designs because any change at all
results in a complete recreation of the timelines and allocations, which is error-prone and costly.

http://www.cs.virginia.edu/people/faculty/stankovic.html

RIL-1101 Page 145

I.2 Timing analysis by a program
In this approach a developer may create the deterministic timelines and assignments using
some algorithm or heuristics implemented as a computer program. The evaluator would analyze
the resulting schedules as in Section I.1. This approach is more desirable than in Section I.1,
because changes can be more easily handled than having to recreate schedules and timelines
by hand. Cyclic schedulers and time-triggered approaches [1] are examples of this approach.

I.3 Mathematical analysis of timing
Many analysis techniques might be applied to the design. Two of the most common are fixed
and dynamic priorities. These both assume that an underlying operating system (OS) executes
tasks based on priority.

I.3.1 Mathematical analysis of timing with fixed priorities
Rate Monotonic Analysis (RMA) [2] is a set of techniques to assign fixed priorities and perform
an associated timing guarantee analysis. RMA has been used successfully in some avionics
systems and in control systems in automobiles.

RMA focuses on periodic tasks, explained in the next paragraph, but can be extended to
address both periodic and aperiodic tasks. RMA can incorporate the complexities mentioned in
Section I.1. As an example, for a large number of periodic tasks, if the sum of the CPU
utilizations of these tasks is below 69%, it is guaranteed that all deadlines will be met. This is
true even though there are preemptions.

A periodic task T of period p means that an instance of that task is activated every time interval
p. Once a particular instance of the task is activated, it has its own deadline d. When the
activated instance's d is p time units from its activation time, then RMA applies. This type of
real-time task is analyzed using this timing requirement and is commonly referred to as a
periodic task with the assumption that deadlines equals periods. If, for each of the particular
activations of task T, d is less than p time units from its activation time, then RMA does not
apply and a new analysis called Deadline Monotonic Analysis (DMA) is required [2].

I.3.2 Mathematical analysis of timing with dynamic priorities
Dynamic priorities normally refer to the OS scheduler, choosing the next task to execute based
on current task priorities (which can change at runtime). These solutions are usually based on
the earliest deadline first (EDF) algorithm. However, if all tasks and their requirements are
known at design and implementation time, EDF and its analysis [3] can be applied offline and
timing guarantees are possible. In this case, the results are very similar to the fixed-priority
approach except that the OS is running an EDF scheduler instead of a fixed-priority scheduler.
An evaluator might also see EDF as a basis for the “timing analysis by a program” approach
mentioned in Section I.2.

I.4 FPGAs
Various functions in the system may be implemented in hardware (today typically through an
FPGA) [5]. Then execution speed of the function can be greater than on a CPU. Functions
implemented on an FPGA can be considered tasks in the overall timing analysis and can be

RIL-1101 Page 146

considered to be subject to the analysis techniques148 described in this appendix. Of course,
issues such as input/output (I/O), ordering, synchronization, etc. must all be considered.

I.5 Practical considerations in applying mathematical analysis
Basic scheduling theory is often presented with many simplifying assumptions. Fortunately,
many practical issues can be addressed with extensions to the basic theory for analysis.

I.5.1 Interrupts
Sometimes interrupts might be necessary. By careful design it is possible to limit the maximum
number of interrupts. The time it takes to handle each interrupt can be bounded. Consequently,
the basic timing analysis can account for the worst-case delays for task executions caused by
interrupts. See Chapter 5 in [2].

I.5.2 Resources
Tasks often require resources beyond the CPU (e.g., access to a data structure or bus). Tasks
can contend for these resources. In addition to guaranteeing no deadlock, it is necessary to
determine the worst-case blocking delay for any exclusively shared resource. In RMA this is
handled by the priority ceiling version of RMA; see pages 5-47 through 5-60 in [2]. For EDF, see
Chapter 7 in [3].

I.5.3 Ordering
In many systems, a set of tasks must execute in a fixed order. For example, the sensor must
first sample, analog-to-digital (AD) conversion must execute, the result must then be sent to a
processor, a task must execute to process the data, and the processed result must then be
converted to an actuator control (and possibly also sent to a display). Classical scheduling
theory has many results for job-shop scheduling in this area. Ordering constraints can also be
imposed on task sets when using cyclic time-triggered RMA- or EDF-based approaches. See
pages 3-10 and 3-11 in [2] and Chapter 7 in [3].

I.5.4 I/O
Any inputs for tasks must be ready when an instance of a task is “released” for execution. This
is normally analyzed as precedence constraints. If the task produces an output, it must be made
clear when that output happens (e.g., only when execution of the tasks is finished or possibly at
any point within the execution of the task). Controlling jitter is often necessary for I/O. See
Chapter 6 in [2].

I.5.5 Distributed systems
Communication between distributed parts of a system introduces delays. Such delays can be
deterministic if bus slots are defined and allocated. Redundant slots can be allocated for fault
tolerance. The time-triggered approach is a well-known way to do this [1]. These
communications delays can also be addressed by RMA (Chapter 6 in [2]).

148 National Instruments is an example of a source of tools currently available for use in common practice
(for example, the LabView development system together with the Real-Time Module and FPGA module).

RIL-1101 Page 147

I.6 Caveats and things to watch out for
Timing design and analysis is very difficult and fraught with hazards. A slight change in
assumptions can make a major difference in the accuracy of the analysis. Following are some
examples of common misunderstandings.

I.6.1 Task semantics
Most periodic task analysis assumes that the semantics of a task period means that a task
executes once per period. This does not guarantee a minimum or a fixed time between two
instances of a periodic task. For example, with this semantics, two executions of a task could
run back-to-back without any time interval between them.

I.6.2 Non-determinism introduced by hardware
Worst-case execution times must be determined for tasks. This is difficult to determine and is
often just measured, which is not recommended. Measurements can be way off if
non-deterministic features on hardware, such as caching, branch prediction, virtual memory, or
multi-core contention, are involved.

I.6.3 The overhead of the OS
Logical analysis might not account for the time it takes to select and switch between tasks. This
would be incorrect. See pages 392 through 395 in [4].

I.6.4 Richard’s Anomalies
Scheduling can lead to hazardous conditions subtly. For example, if a set of timelines is
analyzed as correct and then the developer decides to use faster processors (maybe with idea
to give more slack time, thereby increasing a safety margin), the previous schedules which
worked (i.e., with all deadlines met) might now miss deadlines even though individual tasks are
executing more quickly. There are four variations of these anomalies (see pages 42 through 51
in [4]).

I.6.5 Overloads
Many hard real-time systems assume that all timing is guaranteed so there is no such thing as
an overload. Safety margins can be built into task-execution times and resource requirements to
make overload even less likely. However, understanding the consequences of an overload,
even if one is not expected, is important. Will the system fail safely (that is, be fail safe)? Could
a catastrophic cascade of deadline misses be caused by the overload? See Chapter 9 in [4].

I.7 Integrating timing analysis in engineering
See [6] for an approach to integrate timing analysis in model-based engineering.

I.8 References for Appendix I
[1] Kopetz, H., Real-Time Systems: Design Principles for Distributed Embedded Applications,

Second Edition, Berlin: Springer, April 2011.

[2] Klein, M., et al., A Practitioner’s Handbook for Real-Time Analysis, 1994 edition,
Dordrecht, The Netherlands: Kluwer Academic Publishers.

RIL-1101 Page 148

[3] Stankovic, J., et al., Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[4] Buttazzo, G., Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications, Third Edition, Berlin: Springer, September 2011.

[5] National Instruments, “NI LabVIEW FPGA Module,” available at
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834.

[6] Feiler, P.H., and D.P. Gluch, Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language, Boston: Addison-Wesley,
September 2012.

http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
http://www.awprofessional.com/

RIL-1101 Page 149

APPENDIX J: Assumptions
Author: Dr. John Stankovic, University of Virginia

http://www.cs.virginia.edu/people/faculty/stankovic.html
Integrative editing by Sushil Birla

In reasoning that is part of safety analysis, an assumption is a premise that is not yet validated.
Explicit assumptions are documented. Implicit assumptions are not documented, because they
are not known or understood or were lost over time. Assumptions, especially implicit
assumptions, that turn out to be invalid (not true) are the root cause of many system failures and
a contributor to hazards in many other cases. An initially valid assumption might become invalid
over time. It is also common that combinations of assumptions might cause failure or contribute
to hazards. For example, a component (hardware or software) might be reused without full
awareness and consideration of assumptions that invalidate its fitness for reuse in a different
context. Assumptions occur in every phase of the system-development lifecycle (e.g., in
requirements, design and analysis, implementation, and testing). Overall, it is necessary to
document, manage, and assess the impact of assumptions throughout the life cycle, particularly
if some critical property of the system, such as SAFETY, has to be assured.

Assumptions often affect timing analysis (see Appendix I) and also affect dependencies (see
Appendix K).

J.1 Systematized consideration of assumptions—state of the art
There is a lack of accepted approaches towards systematic assumption declaration,
management, and assessment. Statements of assumptions may be classified in any of three
ways:

1. Formal-like languages: For example, in AADL [1] an assumption can be stated with an
assumes keyword and some condition written in predicate or temporal logic. Then
automatic assumption-matching checks can be run.

2. Semi-Formal: For example, in XML, an assumption may be categorized by type (e.g., see
Table 27) and incorporated in an assumption-management system [2], as shown in
Figure 14.

3. Informal: Used mostly in current practice, an assumption is stated in a natural language
such as English. Because such a statement is subject to misinterpretation, which can
contribute to hazards, it is not adequate and not recommended for use in engineering a very
critical system.

Assumptions can also be categorized as static and dynamic assumptions and indicate a level of
criticality. These notions should be part of the assumption descriptions.

<assumption>
 <type>

 Control
</type>
 <description>

Statement of control assumption in a previously declared language.
 </description>

 </assumption>

Figure 14: Example of semi-formal statement of an assumption.

http://www.cs.virginia.edu/people/faculty/stankovic.html

RIL-1101 Page 150

Table 27 includes the different types of assumptions which could be stated in XML, with brief
associated examples.

Table 27: Different types of assumptions which could be stated in XML

Type of Assumption Example of an informal statement of an assumption
Management Person X is responsible for a particular task.
Environment (of
System)

Backup power is available 24 x 7.

Software Component
Design (Decisions)

Minimum amount of data required for a component to make a decision is <…>.

System Software Background processing runs at infrequently scheduled times.
Hardware Caches are not to be used.
Timing Some declared minimum time must elapse between two consecutive

executions of a task.
Control Only one module must control a particular actuator.
Data Data set X must be replicated at physically distinct memories.
Semantics of
Application

Property X exists for a given component when executed, e.g., the accuracy of
a signal-processing module when assessing a critical condition of the plant.

Faults A particular fault will not occur more than x times in interval y.
Security Communication X is encrypted.

When an assumption is stated in this form, a management system can analyze it for potential
problems (e.g., contributory hazards) and updates can occur over time. For example, the
analysis might find that across the entire set of assumptions there are two or more assumptions
that cannot simultaneously be true. It is also possible to match assumptions among composed
components. Some software development kits, such as Eclipse [3], integrate environment,
assumptions, architecture, and source code in the same tool.

A complex system may entail an enormous number of assumptions of all types (Table 27) and
for various purposes (Table 28).
Table 28: Examples of assumptions for different purposes
Context of Assumption Example of assumption
Timing All worst-case execution times are known.
Timing All tasks always meet their deadlines.

(What is the impact of a task missing its deadline?)
Timing There is enough memory assigned to each task.
Timing No hardware will be changed, etc.
Fault tolerance On power failure, a battery backup is available and it is functional
Fault tolerance More than “n” simultaneous failures do not occur.
Security A particular module will not be attacked.
Security An encryption key won’t be compromised.
Control Only one module controls a particular actuator.
Control Data sent to the control algorithm is correct and in time.

J.2 Monitoring an assumption at run time
Because underlying assumptions have been the cause of many failures and can contribute to
hazards, assumption-aware work products of engineering are valuable (indeed, necessary) in
complex critical systems (e.g., for which the SAFETY property has to be assured). If an
assumption can change over time, runtime monitoring for such change may be considered.

RIL-1101 Page 151

Does the presented design have an assumption that can change over time? If so, does the
design include runtime monitoring of the change in the assumption?

J.3 Statement of assumptions within code
Sometimes, assumptions are also written into source code (with a keyword such as assumes),
so that source code can be scanned by programs to collect and analyze all the assumptions.
This technique often deteriorates over time as code is updated and assumptions are not.

J.4 Statement of assumptions within models
Assumptions can also be added to graphic representations of work products, using tools based
on languages such as SysML [4]. This tends to be imprecise and difficult to maintain. Academic
tools such as Ptolemy have some support for specifying assumptions [5].

J.5 References for Appendix J
[1] Feiler, P.H., D.P. Cluch, and J.J. Hudak, “The Architecture Analysis &Design Language

(AADL): An Introduction,” Technical Note CMU/SEI-2006-TN-011, Software Engineering
Institute, Pittsburgh, PA, February 2006, available at
http://www.sei.cmu.edu/reports/06tn011.pdf.

[2] Lewis, G.A., T. Mahatham, and L. Wrage, “Assumptions Management in Software
Development,” Technical Note CMU/SEI-2004-TN-021, Software Engineering Institute,
Pittsburgh, PA, August 2004, available at http://www.sei.cmu.edu/reports/04tn021.pdf.

[3] The Eclipse Foundation, “Eclipse - The Eclipse Foundation open source community
website,” available at http://www.eclipse.org/home/index.php.

[4] SysML.org, “SysML.org: SysML Open Source Specification Project,” available at
http://www.sysml.org/.

[5] University of California–Berkeley, “Ptolemy Project Home Page,” available at
http://ptolemy.eecs.berkeley.edu/.

http://www.sei.cmu.edu/reports/06tn011.pdf
http://www.sei.cmu.edu/reports/04tn021.pdf
http://www.eclipse.org/home/index.php
http://www.sysml.org/
http://ptolemy.eecs.berkeley.edu/

RIL-1101 Page 152

APPENDIX K: Dependency
Authors:

Dr. John Stankovic, University of Virginia http://www.cs.virginia.edu/people/faculty/stankovic.html

Dr. Manfred Broy, Technische Universität München http://www4.in.tum.de/~broy/

Prof. John McDermid, University of York http://www-users.cs.york.ac.uk/~jam/

Integrative editing by Sushil Birla

K.1 Purpose and scope
This appendix explains the term, dependency, as it is used in RIL-1101.

In software it is often noted that if module A uses module B, then module A depends on
module B. However, dependencies are much more complicated than a simple uses relation.
This appendix provides a comprehensive understanding of these complications.

A dependency between two or more system elements may exist or occur through their structure,
their behaviors, or their values in the form of some cause-and-effect relationship.

A number of dependencies exist within developed systems and between their elements and
their constituents, as well as in their descriptions as included in their work products [1].

K.2 Safety significance of dependency
A safety system in a nuclear power plant (NPP) is an independent layer of defense. An
independent layer of defense protects against the unknowns and uncertainties in the other
layers of defense. An obscure dependency can undermine the intended defense strategy.

Dependencies on common sources of defects or deficiencies can render homogeneous
redundancy ineffective, because the same defect can repeat in each redundant element; for
example:

• Defect or deficiency149 in a requirement.
• Defect or deficiency in the implementation of the application software.
• Defect or deficiency in the implementation or configuration of the system software.

Dependencies can propagate the effect of a deficiency to independent and functionally different
units; consider the following cases:

• Dependency on common internal information; for example:
o Year 2000 “bug.”
o Count of cycles since the last reset.

• Dependency on conditions external to the units; for example:
o Usage of resources that depend on process transients.

Item 3 in Section 2.4.2 of RIL-1101 refers to the concern of compromise of redundancy through
a dependency.
The effect of these dependencies should be analyzed to prove that the safety function is not
degraded.

149 Issue: If requirements are deficient, the terms “failure” and “defect” are not applicable; the
common-cause failure (CCF) notion, applied to a specified system, does not serve well; and failure
analysis and defect analysis do not serve as adequate hazard analysis.

http://www.cs.virginia.edu/people/faculty/stankovic.html
http://www4.in.tum.de/~broy/
http://www-users.cs.york.ac.uk/~jam/

RIL-1101 Page 153

K.3 Types of dependency
Any factor on which an identified hazard depends (or by which it is influenced) is a contributory
hazard. A contributor may influence a hazard in many ways (paths or channels or couplings);150
for example:

1. Function.
2. Control flow.
3. Data or Information.
4. Sharing of resources.
5. Constraint on resources; for example: Explicit preference order.
6. Conflicting goals or losses of concern.
7. States or conditions in the environment.

7.1. Controlled processes.
7.2. Supporting physical processes.

8. Fault.
9. Constraints.
10. Assumptions.
11. Concept.
12. Some unintended, unrecognized form of coupling.

K.4 Examples of dependencies
Dependencies exist within and across hardware and software components and also result from
interaction with the physical world. To organize the ideas of dependencies, we first list and give
a few examples of those dependencies that arise from the hardware and from the physical
world.

1. Sensors: Software signal-processing and decisionmaking algorithms depend on the
properties of sensors such as range, accuracy, repeatability, sensitivity, resolution,
overshoot, drift, and power, as well as the numbers and placement (location) of the sensors.

2. Actuators: The power needed to run the actuator and the accuracy of applying command
signal influence the output.

3. Central processing units (CPUs) and memories: Speed of the CPU, implementation
features such as caches and branch prediction, size of memory, type and location of
memories on buses, and power requirements influence the output.

4. Field-programmable gate arrays (FPGAs): Speed, power, timing, and availability of inputs
influence the output.

5. Buses: Communication between distributed devices and software depends on the bus
speed and access protocols; it might also depend on a hierarchy of buses.

6. I/O devices: Speeds, power, locations, and read and write techniques influence their
outputs.

7. Physical properties: Sizes of sensors, actuators, and computing devices; I/O
interconnection types; temperatures produced by devices; reliability of devices; fault models;

150 In addition to the factors directly in the causal paths, hazards can also be contributed from side effects
such as interferences across activities and resources.

RIL-1101 Page 154

and the question of whether the system will degrade over time without renewal or
maintenance (a form of entropy) influence the consistency of the system output.

8. Time: Guaranteeing deadlines depends on the time requirements of real-world phenomena,
the speed of hardware, the software processing required, and scheduling algorithms; delays
can accumulate.

9. Location: Placement of sensors, actuators, and displays influence the system output.

10. Environment: External conditions such as earthquakes, hurricanes, power outages,
humidity, and fire influence the system output.

11. Control: The accuracy of models under which control algorithms were created and the
availability or maximum delay of inputs to controller influence the output.

12. Chain of events: A particular series of events influences the system output.

13. Humans: Reaction time, awareness, and expertise influence their output.

Examples of dependencies that arise primarily in software include the following:

1. Numbers and types of parameters: This is straightforward to check and often given in
Interface Definition Languages (IDLs).

2. Uses relationship: A call graph (usually automatically generated) can identify simple
relationships between and among uses.

3. Runtime environment: The operating system (OS), its version, and particular settings
(configurations) and algorithms being used constitute the runtime environment. It is
necessary to ensure that unexpected modules are not being run, e.g., modules for system
monitoring or periodic cleanup which are accounted for.

4. Resources: Amount of CPU time, memory, and bus bandwidth.

5. Name: Components are assumed to be named consistently.

6. Data: Location, synchronization, availability, and redundancy.

7. Ordering: Some sets of components must run in a strict or partial order.

8. Race conditions: If some condition causes uncertainty in the time of completion of some
functions or the time of arrival of some data and thus the order of these occurrences, it is
called a race condition. If the order of occurrence can affect the value of the system output it
could be a hazard – sometimes known as a race hazard.

The following examples demonstrate how tight specifications, assumptions, and constraints
interrelate logically and might lead to implicit dependencies that can be discovered by analysis
of explicitly documented dependencies.

K.4.1 Example of a data dependency
For instance, two state attributes, A and B, for data values in a system are in a dependency if,
given the value of A, the value of B is affected by the value of A (e.g., fixed to a specific value or
bounded within a specific range).

K.4.2 Example of a timing dependency
Other examples are timings of events or causal dependencies between events such as shown
in the following simple example:

• Event A: “Temperature of water gets too high while valve is closed”;

RIL-1101 Page 155

• Event B: “Valve opens”;

• Dependency in the system: “Whenever Event A happens, then event B happens within
x milliseconds.”

K.4.3 Example of a dependency on a hardware function
A function or information in software can depend on a function implemented in hardware.
An example would be:

 “Sensor 1 data available” depends_on “Power supply X failure”

 “Sensor 2 data available” depends_on “Power supply X failure”

which indicates a common-cause failure. Such a dependency is different from direct
dependency.

A common-cause dependency between events A and B, denoted as common_cause A, B
has the following meaning:
if there is an event C for which the conditions

 A depends_on C
and

 B depends_on C

hold.

K.4.4 Example of a resource dependency
These different types of dependencies may interact. For instance, a resource dependency might
cause a functional dependency. Two functions, A and B, that are intended to be independent
but use the same resources can unintentionally become dependent. If function A might
compromise the shared resource in a certain situation in such a way that function B is no longer
available, and vice versa. this is a bidirectional dependency between A and B. Then, the hazard
analysis (HA) of the system should include the analysis of this dependency.

K.4.5 Dependency through assumptions and constraints
Constraints on interactions can cause dependencies.

• Properties of the environment might actually be assumptions (example: “The water
temperature cannot change by more than 10 degrees within 10 milliseconds”).

• Properties of system elements might interact with such assumptions (example: “Whenever
the temperature changes by more than 1 degree, the sensor issues a signal”).

• In this way, dependencies are created by constraints on the interactions (example: “There
is a delay of at least 1 millisecond between two signals issued by the temperature
sensor”).

Assumptions are often not given to the developer as part of the specification and are not direct
relationships between components of the system. Note that the overall system depends on
assumptions being valid, so there are dependencies related to assumptions - see Appendix J.

K.4.6 Example of logical dependency between logical entities
Let us consider examples of system properties expressed by logical entities:

RIL-1101 Page 156

(P1) “The temperature changes within 1 millisecond by less than 1 degree.”

(P2) “The temperature sensor updates the variable that stores the measured temperature
every 10 milliseconds.”

(P3) “The variable that stores the measured temperature holds a value that deviates at most
by 10 degrees from the actual temperature.”

These logical entities may be contained in different work products or in one work product at
different positions.

(P3) expresses a system dependency.

(P3) is a logical consequence of (P1) and (P2). This is an example of a dependency between
logical entities.

If the property “The water is too hot” is a hazard (or a contributing hazard) and if its mitigation
depends on the preciseness of the stored measured temperature, the dependency “(P3) is a
logical consequence of (P1) and (P2)” is of relevance for the hazard analysis. If (P1) or (P2) are
changed, the conclusion of the hazard analysis might no longer be valid.

Specific logical dependencies may relate logical entities formulated at different levels of
abstraction. Assume that a sensor sends an alarm signal S1 if the water temperature gets too
hot. If this is the case, the dependency between event “signal S1 sent” and the event “water
temperature too hot” is only understandable by the additional information “signal S1 indicates
water too hot”. This way we get a relationship between the technical information “signal S1 sent”
and the domain-specific event “water temperature too hot”.

For dependencies between system properties, the dependency model basically represents
logical dependencies between logical statements (in terms of logical entities) using the
mathematical relation, “logical implication.” Given a number of logical propositions, their
implication relationships can be combined applying deduction rules. This related set is a
subnetwork of the complete network of logical dependencies in the system. This subnetwork
can lead to proof trees (see [1]).

K.5 Dependencies can network
For a system of the kind in RIL-1101’s focus, dependencies are not simple chains or trees, but a
network (also known as directed graph or digraph [2]); for example:

• The same factor might recur in many places in the network (i.e., common causes might
exist).

• There are feedback paths; the dependency structure is a directed cyclic graph. It is a
well-known generic control structure for which well-known analysis techniques exist. It
can be applied to a safety-related system in its concept phase (Section 2.4) or to its
element (Sections 2.7 through 2.9). It can also be applied to the technical processes
(Section 2.3), for developing a safety-related system or its element. It can also be
applied to the organizational processes (Section 2.2) that influence the development
processes.

K.6 Dependencies can propagate through faults
Many dependencies also exist for faults in systems. Hazard analysis should include the analysis
of the dependencies across faults to find out whether a fault can propagate and degrade a

RIL-1101 Page 157

safety function. This requires a fault-propagation specification and component fault behavior
specification, an explicit specification of fault types propagated, and an explicit specification of
system fault states [3]151.

K.7 Unrecognized dependency
Missing, wrong, unwanted, or misunderstood dependencies might contribute to a hazard. If A
can have an unwanted effect on B, then B is in some sense dependent on A. In other words,
B is not independent of A. Dependence of this type motivated RIL-1101, in which it is
characterized as “interference.” Furthermore, in such cases (of unwanted interactions), the
effect on B might not be determinable. For example, consider the effects of resource sharing
and of a memory leak.

There are so many sources of unwanted dependencies that it is easy152 to miss one. As soon as
one is discovered or suspected, it should be documented. Once this is done, known methods
can be applied to perform the analysis.

Unrecognized dependencies are defects in hazard analysis and might lead to degradation of a
safety function.

For complicated dependencies, many observations are needed to uncover dependency [4].

K.8 Expressing dependencies
System dependencies are general relations between

• system functions
• system elements
• platform (infrastructural) services
• system events, messages, and signals
• system data
• system states
• system timing

This documentation can be made very explicit (for example, in proposition P1, “event A leads to
event B,” and proposition P2, “event B leads to event C”) or it can be implicit in such a way that
a dependency can be concluded from explicit stated dependencies (for example, from the two
propositions P1 and P2, we can conclude proposition P3, “event A leads to event C”). If all three
propositions P1, P2, and P3 are explicitly included in work products in logical entities (say, E1,
E2, and E3 respectively), we get an instance of dependencies between logical entities of work
products. The contents of E1 and E2 imply proposition P3 being part of the content of E3.

The following predicate expresses dependencies in a formalized way for events A and B in a
system:
 A depends_on B

151 This reference uses the term “error,” which is mapped into the term “fault” in RIL-1101.
152 In current practice.

RIL-1101 Page 158

This proposition expresses that there is some causal relationship between A and B. Such a
causal relationship can have many different aspects and implications:

• A cannot happen before B has happened; as an example, consider a system which is
supposed to raise an alarm (event A) as soon as the pressure in a tank gets too high
and in which a sensor measures the pressure and sends the values to the alarm
manager (event B).

• A is guaranteed to happen if B has happened; as an example, consider a system which
is supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high
and in which a sensor measures the pressure and sends the values to the alarm
manager (event B); an instance of “incorrect ‘pressure too high’ data measured at
sensor” (event B) leads to an incorrect alarm (event A).

• A cannot happen if B has happened; as an example, consider a system which is
supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high
and in which a sensor that measures the pressure and sends the values to the alarm
manager over a communication line, but assume that the energy supply for the
communication line can be interrupted (event B).

Note that the proposition
 A depends_on B

does not require that, as a result of every behavior, event A may interfere with B; it means that
in some instance of behavior, A does interfere with B.

Note furthermore that the relationship
 A depends_on B

Is not symmetric, in general, and is not even transitive. The same holds for its negation
 A is_independent_of B

The missing transitivity of the independence relation makes it very difficult to reason about
independence and freedom from interference.

The examples show that dependencies between system constituents lead to dependencies
between logical entities of work products. Because the content of logical entities of work
products can be understood as logical propositions and predicates, these dependencies can be
treated as logical relations between propositions or predicates.

Similar to the formulation of a formal predicate characterizing dependencies between events,
discussed above, relationships can be characterized between data attributes in states and,
more generally, one can formulate rules for dependencies in data and control flow and the
propagation of their effects.

System dependencies can be reflected in system models. The models should contain enough
information to understand dependencies and propagation paths for contributory hazards (see
the suggestion in Note 1 to Table 22 in Appendix C.5 for how a dependency model can help
HA).

A model captures and describes certain classes of dependencies (such as process
dependencies), including rules to derive dependencies and to analyze their effects. This does
not imply that a separate model is needed exclusively for this purpose. A separate model could
lead to inconsistencies with the primary engineering model. For dealing with dependencies
within the work product, the primary engineering model of the (work) product should suffice. For
example, the work product might be a model of requirements, model of architecture, or model of

RIL-1101 Page 159

detailed design. Source code could also serve as a “model” of the executable. These models
should be expressive enough to capture all kinds of dependencies.

For dependencies within the development process, the primary engineering model of the
process should suffice. In other words, all factors affecting the product (of the process) should
be identified in the process model.

Semantics of the relationships should be explicit.

K.9 Deriving dependencies
Note the difference between an implicit dependency (which is not documented explicitly, but can
be deduced by combination from explicitly documented dependencies) and a dependency that
is not identified at all (which is, therefore, not discoverable through analysis).

The system’s behavior can be deduced from the architecture and the specification of the
interface behavior of its elements when rules of composition and refinement are followed (see
Appendix D). Similarly, system behavior can also be deduced from some fault condition in an
element of the system if the architecture includes the relationships that affect fault
propagation [5]. HA should utilize this information including rules to deduce further
dependencies from explicitly documented ones.

Thus, a well-specified architecture is essential for dependency analysis (see [3] and [5]).

K.10 Avoiding unwanted dependency
Careful explicit specification of constraints and system properties and subsequent analysis
make hidden dependencies explicit and help to avoid unwanted dependencies and to reason
about dependencies in hazard analysis.

K.11 Languages available for modeling dependencies
Examples of means that have been used to model153 dependencies include the following: Call
graphs, IDLs [6], data flow diagrams, and design languages (graphical or not) such as AADL [7]
and SysML [8]. AADL, with extensions and supporting tools, is in use as a research platform in
many countries, with ongoing extension activities to support safety evaluation [3].

For Want of a Nail
For want of a nail the shoe was lost.

For want of a shoe the horse was lost.
For want of a horse the rider was lost.

For want of a rider the message was lost.
For want of a message the battle was lost.
For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

-Traditional

153 These are not necessarily complete and are only as good as the information recorded in them.

RIL-1101 Page 160

K.12 References for Appendix K
[1] Broy, M. “A Logical Approach to Systems Engineering Artifacts and Traceability: From

Requirements to Functional and Architectural Views,” in Broy, M., D. Peled, and
G. Kalus, eds., Engineering Dependable Software Systems, Amsterdam: IOS Press, 2013,
pp. 1–48.

[2] Garrett, C., and G. Apostolakis, “Context in the risk assessment of digital systems,” Risk
Analysis 19(1):23–32, February 1999.

[3] Delange, J., and P. Feiler, “Supporting Safety Evaluation Process using AADL,”
Proceedings of the 7th Layered Assurance Workshop, New Orleans, LA,
December 9–10, 2013, Applied Computer Security Associates, Silver Spring, MD,
available at http://www.acsac.org/2013/workshops/law/2013-law-proceedings.pdf.

[4] Pfaltz, J.L., “Logical Implication and Causal Dependency,” available at
http://www.cs.virginia.edu/~jlp/06.ICCS.pdf.

[5] Feiler, P., and A. Rugina, “Dependability Modeling with the Architecture Analysis & Design
Language (AADL),” CMU/SEI-2007-TN-043, Software Engineering Institute,
Pittsburgh, PA, July 2007, available at http://www.sei.cmu.edu/reports/07tn043.pdf.

[6] Object Management Group, Inc., “OMG IDL,” available at
http://www.omg.org/gettingstarted/omg_idl.htm.

[7] Feiler, P.H., D.P. Cluch, and J.J. Hudak, “The Architecture Analysis & Design Language
(AADL): An Introduction,” Technical Note CMU/SEI-2006-TN-011, Software Engineering
Institute, Pittsburgh, PA, February 2006, available at
http://www.sei.cmu.edu/reports/06tn011.pdf.

[8] SysML.org, “SysML.org: SysML Open Source Specification Project,” available at
http://www.sysml.org/.

http://www.acsac.org/2013/workshops/law/2013-law-proceedings.pdf
http://www.cs.virginia.edu/~jlp/06.ICCS.pdf
http://www.sei.cmu.edu/reports/07tn043.pdf
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.sei.cmu.edu/reports/06tn011.pdf
http://www.sysml.org/

	EXECUTIVE SUMMARY
	1 INTRODUCTION
	1.1 Regulatory basis
	1.2 Work authorization
	1.3 Relationship with licensing experience
	1.4 Significance of the technical basis in licensing reviews
	1.5 Background
	1.6 Purpose and intended audience
	1.7 Scope
	1.7.1 Immediate scope limited to learning cycles
	1.7.1.1 Assumptions about areas not well understood
	1.7.1.2 Extrapolation from recent licensing experience
	1.7.1.3 Support for application-specific customization of SRP Chapter 7
	1.7.2 Focus on evaluation rather than performance of hazard analysis
	1.7.3 Focus on licensing reviews of safety automation
	1.7.4 Focus on safety-related systems for NPPs
	1.7.5 Types of systems intended in scope
	1.7.6 Focus on contributory hazards rooted in systemic causes
	1.7.7 Scope excludes risk quantification
	1.7.8 Relation between hazard analysis and safety analysis

	1.8 Organization of RIL-1101

	2 CONSIDERATIONS IN EVALUATING HAZARD ANALYSIS
	2.1 Evaluation of Overall Hazard Analysis
	2.1.1 Considerations for hazards within the system being analyzed
	2.1.2 Considerations for hazards contributed through processes

	2.2 Evaluation of hazard analysis—organizational processes
	2.3 Evaluation of hazard analysis—technical processes
	2.4 Evaluation of Hazard Analysis—System Concept
	2.4.1 Hazards associated with the environment of the DI&C system
	2.4.1.1 Hazards related to interaction with plant processes
	2.4.1.2 Contributory hazards from NPP-wide I&C architecture
	2.4.1.3 Contributory hazards from human/machine interactions
	2.4.2 Contributory hazards in conceptual architecture
	2.4.3 Contributory hazards from conceptualization processes

	2.5 Evaluation of hazard analysis—Requirements
	2.5.1 System Requirements
	2.5.1.1 Quality requirements
	2.5.1.2 Contributory hazards through inadequate system requirements
	2.5.1.3 Contributory hazards from system-requirements engineering
	2.5.2 Software Requirements
	2.5.2.1 Contributory hazards in software requirements
	2.5.2.2 Contributory hazards from software-requirements engineering

	2.6 Evaluation of hazard analysis—Architecture
	2.6.1 Contributory hazards in system architecture
	2.6.2 Contributory hazards from system architectural engineering
	2.6.3 Contributory hazards in software architecture
	2.6.4 Contributory hazards in software architectural engineering

	2.7 Evaluation of Hardware-Related Hazard Analysis
	2.8 Evaluation of Hazard Analysis related to Software Detailed Design
	2.9 Evaluation of Hazard Analysis Related to Software Implementation

	3 DISCUSSION OF REGULATORY SIGNIFICANCE
	4 CONCLUSIONS
	5 FUTURE RESEARCH, DEVELOPMENT, AND TRANSITION
	5.1 Transition, knowledge transfer, and knowledge management
	5.2 Integration of safety-significant information from NPP-level analysis
	5.3 Harmonization and disambiguation of vocabulary
	5.4 International harmonization
	5.5 Learning from other application domains and agencies
	5.6 Analysis earlier in the system-development lifecycle
	5.7 Risk-informed evaluation
	5.8 Integrated hazard analysis for safety, security and other concerns
	5.9 Integrated organizing framework
	5.10 Ideas received through review comments

	6 ABBREVIATIONS AND ACRONYMS
	7 REFERENCES
	APPENDIX A: Glossary
	APPENDIX B: Technical Review Process
	APPENDIX C: Evaluating Hazard Analysis—State Of The Art
	C.1 Contextual interpretation of terms
	C.1.1 General context of hazard analysis
	C.1.2 Object of analysis
	C.1.3 Analysis at different levels in the dependency network

	C.2 Reference lifecycle model for hazard analysis
	C.3 HA tasks—an example set
	C.3.1 Evaluating the quality of HA output
	C.3.2 Hazard identification and logging
	C.3.3 Evaluation of a logged hazard

	C.4 Effect of competence on quality of HA work products
	C.5 Quality of information input to HA at each development phase
	C.6 Hazard Analysis Techniques—useful extractions from survey
	C.7 References for Appendix C

	APPENDIX D: Refinement
	D.1 Purpose and Scope
	D.2 Abstraction and refinement
	D.3 Motivation for refinement as a constraint on system development
	D.4 Mathematical underpinnings
	D.4.1 Refinement as logical implication
	D.4.2 Useful properties of the refinement relation
	D.4.3 Sequence of Refinement Steps
	D.4.4 Refinement and Decomposition
	D.4.4.1 Composing and Decomposing Interfaces
	D.4.4.2 Compositionality of Refinement
	D.4.4.3 Example

	D.5 References for Appendix D

	APPENDIX E: Checklists to assist hazard recognition
	E.1 Categories of hazard origination
	E.2 Checklist for hazard sources
	E.3 Checklist of hazard sources in semiconductor manufacturing
	E.4 Hazard sources in the physical environment of a digital safety system
	E.5 Digital safety system contribution to hazards affecting its environment
	E.6 References for Appendix E

	APPENDIX F: Organizational Qualities To Support Safety
	F.1 Five Principles
	F.2 Accountability, Standardization, and Adaptation
	F.3 Organizational culture and decisional premises
	F.4 Communication for collective mindfulness
	F.4.1 About Becoming a Competent Communicator
	F.4.2 Participatory Communication Climate
	F.4.3 Collective Communication Competence and Diversity
	F.4.4 Conversation Quality and Deference to Expertise
	F.4.4.1 Characteristics of Groupthink
	F.4.4.2 Countermeasures to Prevent Groupthink

	F.5 Collective mindfulness and competence
	F.6 References for Appendix F

	APPENDIX G: An Example Case Study
	G.1 Ft. Calhoun Event
	G.2 References for Appendix G

	APPENDIX H: Examples of NPP Modes
	APPENDIX I: Evaluation of Timing Analysis
	I.1 Timing analysis by hand
	I.2 Timing analysis by a program
	I.3 Mathematical analysis of timing
	I.3.1 Mathematical analysis of timing with fixed priorities
	I.3.2 Mathematical analysis of timing with dynamic priorities

	I.4 FPGAs
	I.5 Practical considerations in applying mathematical analysis
	I.5.1 Interrupts
	I.5.2 Resources
	I.5.3 Ordering
	I.5.4 I/O
	I.5.5 Distributed systems

	I.6 Caveats and things to watch out for
	I.6.1 Task semantics
	I.6.2 Non-determinism introduced by hardware
	I.6.3 The overhead of the OS
	I.6.4 Richard’s Anomalies
	I.6.5 Overloads

	I.7 Integrating timing analysis in engineering
	I.8 References for Appendix I

	APPENDIX J: Assumptions
	J.1 Systematized consideration of assumptions—state of the art
	J.2 Monitoring an assumption at run time
	J.3 Statement of assumptions within code
	J.4 Statement of assumptions within models
	J.5 References for Appendix J

	APPENDIX K: Dependency
	K.1 Purpose and scope
	K.2 Safety significance of dependency
	K.3 Types of dependency
	K.4 Examples of dependencies
	K.4.1 Example of a data dependency
	K.4.2 Example of a timing dependency
	K.4.3 Example of a dependency on a hardware function
	K.4.4 Example of a resource dependency
	K.4.5 Dependency through assumptions and constraints
	K.4.6 Example of logical dependency between logical entities

	K.5 Dependencies can network
	K.6 Dependencies can propagate through faults
	K.7 Unrecognized dependency
	K.8 Expressing dependencies
	K.9 Deriving dependencies
	K.10 Avoiding unwanted dependency
	K.11 Languages available for modeling dependencies
	K.12 References for Appendix K

